Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Apr;41(4):743–747. doi: 10.1128/aac.41.4.743

Amphotericin B protects cis-parinaric acid against peroxyl radical-induced oxidation: amphotericin B as an antioxidant.

K Osaka 1, V B Ritov 1, J F Bernardo 1, R A Branch 1, V E Kagan 1
PMCID: PMC163786  PMID: 9087481

Abstract

The antifungal effects of amphotericin B are believed to be due to two possibly interrelated mechanisms: an increase in permeation by binding to sterols in cellular membranes and a prooxidant effect causing oxidative damage in target cells. However, the seven conjugated double bonds in amphotericin B raise the possibility that it could be highly susceptible to autoxidation, causing an antioxidant effect. In the present study, we investigated the prooxidant and antioxidant properties of amphotericin B in a model system in which oxidation of a reporter molecule, cis-parinaric acid, was induced by azo initiators of peroxyl radicals. Since interactions of amphotericin B with sterols are essential for its pharmacological and toxic actions, we also studied the effects of cholesterol on the prooxidant and antioxidant properties of amphotericin B. Amphotericin B caused a noncollisional quenching of a characteristic fluorescence of cholesteryl cis-parinarate integrated in liposomes, suggesting the formation of amphotericin B-cholesteryl cis-parinarate complex. This effect of amphotericin B was ablated by increasing concentrations of cholesterol. We found that amphotericin B inhibited oxidation of cis-parinaric acid complexed with human serum albumin [using a water-soluble azo initiator, 2,2'-azobis(2aminopropane)dihydrochloride] and in liposomes [using a lipid-soluble azo initiator, 2,2'-azobis(2,4-dimethylvaleronitrile)]. The inhibitory effect of amphotericin B on 2,2'-azobis(2,4-dimethylvaleronitrile)-induced peroxidation of cis-parinaric acid in liposomes was also diminished by cholesterol. The antioxidant effect of amphotericin B in this model system suggests that amphotericin B does not exert its pharmacological and toxicological responses through a prooxidant effect to cause damage in target cells.

Full Text

The Full Text of this article is available as a PDF (194.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E. On the anatomy of amphotericin B-cholesterol pores in lipid bilayer membranes. Kidney Int. 1973 Nov;4(5):337–345. doi: 10.1038/ki.1973.126. [DOI] [PubMed] [Google Scholar]
  2. Brajtburg J., Elberg S., Schwartz D. R., Vertut-Croquin A., Schlessinger D., Kobayashi G. S., Medoff G. Involvement of oxidative damage in erythrocyte lysis induced by amphotericin B. Antimicrob Agents Chemother. 1985 Feb;27(2):172–176. doi: 10.1128/aac.27.2.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brajtburg J., Powderly W. G., Kobayashi G. S., Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother. 1990 Feb;34(2):183–188. doi: 10.1128/aac.34.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng J. T., Witty R. T., Robinson R. R., Yarger W. E. Amphotericin B nephrotoxicity: increased renal resistance and tubule permeability. Kidney Int. 1982 Dec;22(6):626–633. doi: 10.1038/ki.1982.221. [DOI] [PubMed] [Google Scholar]
  5. Cutaia M., Bullard S. R., Rudio K., Rounds S. Characteristics of amphotericin B-induced endothelial cell injury. J Lab Clin Med. 1993 Feb;121(2):244–256. [PubMed] [Google Scholar]
  6. Handelman G. J., van Kuijk F. J., Chatterjee A., Krinsky N. I. Characterization of products formed during the autoxidation of beta-carotene. Free Radic Biol Med. 1991;10(6):427–437. doi: 10.1016/0891-5849(91)90051-4. [DOI] [PubMed] [Google Scholar]
  7. Kuypers F. A., van den Berg J. J., Schalkwijk C., Roelofsen B., Op den Kamp J. A. Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim Biophys Acta. 1987 Sep 25;921(2):266–274. doi: 10.1016/0005-2760(87)90027-0. [DOI] [PubMed] [Google Scholar]
  8. Lamy-Freund M. T., Ferreira V. F., Schreier S. Mechanism of inactivation of the polyene antibiotic amphotericin B. Evidence for radical formation in the process of autooxidation. J Antibiot (Tokyo) 1985 Jun;38(6):753–757. doi: 10.7164/antibiotics.38.753. [DOI] [PubMed] [Google Scholar]
  9. Niki E. Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 1990;186:100–108. doi: 10.1016/0076-6879(90)86095-d. [DOI] [PubMed] [Google Scholar]
  10. Ozhogina O. A., Kasaikina O. T. Beta-carotene as an interceptor of free radicals. Free Radic Biol Med. 1995 Nov;19(5):575–581. doi: 10.1016/0891-5849(95)00064-5. [DOI] [PubMed] [Google Scholar]
  11. Palozza P., Calviello G., Bartoli G. M. Prooxidant activity of beta-carotene under 100% oxygen pressure in rat liver microsomes. Free Radic Biol Med. 1995 Dec;19(6):887–892. doi: 10.1016/0891-5849(95)00094-e. [DOI] [PubMed] [Google Scholar]
  12. Palozza P., Krinsky N. I. The inhibition of radical-initiated peroxidation of microsomal lipids by both alpha-tocopherol and beta-carotene. Free Radic Biol Med. 1991;11(4):407–414. doi: 10.1016/0891-5849(91)90158-y. [DOI] [PubMed] [Google Scholar]
  13. Palozza P., Moualla S., Krinsky N. I. Effects of beta-carotene and alpha-tocopherol on radical-initiated peroxidation of microsomes. Free Radic Biol Med. 1992;13(2):127–136. doi: 10.1016/0891-5849(92)90074-q. [DOI] [PubMed] [Google Scholar]
  14. Parasassi T., Giusti A. M., Raimondi M., Ravagnan G., Sapora O., Gratton E. Cholesterol protects the phospholipid bilayer from oxidative damage. Free Radic Biol Med. 1995 Oct;19(4):511–516. doi: 10.1016/0891-5849(95)00038-y. [DOI] [PubMed] [Google Scholar]
  15. Rickards R. W., Smith R. M., Golding B. T. Macrolide antibiotic studies. XV. The autoxidation of the polyenes of the filipin complex and lagosin. Jpn J Antibiot. 1970 Dec;23(6):603–612. [PubMed] [Google Scholar]
  16. Sawaya B. P., Briggs J. P., Schnermann J. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol. 1995 Aug;6(2):154–164. doi: 10.1681/ASN.V62154. [DOI] [PubMed] [Google Scholar]
  17. Sokol-Anderson M. L., Brajtburg J., Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis. 1986 Jul;154(1):76–83. doi: 10.1093/infdis/154.1.76. [DOI] [PubMed] [Google Scholar]
  18. Tsuchihashi H., Kigoshi M., Iwatsuki M., Niki E. Action of beta-carotene as an antioxidant against lipid peroxidation. Arch Biochem Biophys. 1995 Oct 20;323(1):137–147. doi: 10.1006/abbi.1995.0019. [DOI] [PubMed] [Google Scholar]
  19. Tsuchiya M., Kagan V. E., Freisleben H. J., Manabe M., Packer L. Antioxidant activity of alpha-tocopherol, beta-carotene, and ubiquinol in membranes: cis-parinaric acid-incorporated liposomes. Methods Enzymol. 1994;234:371–383. doi: 10.1016/0076-6879(94)34107-9. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES