Abstract
The antifungal effects of amphotericin B are believed to be due to two possibly interrelated mechanisms: an increase in permeation by binding to sterols in cellular membranes and a prooxidant effect causing oxidative damage in target cells. However, the seven conjugated double bonds in amphotericin B raise the possibility that it could be highly susceptible to autoxidation, causing an antioxidant effect. In the present study, we investigated the prooxidant and antioxidant properties of amphotericin B in a model system in which oxidation of a reporter molecule, cis-parinaric acid, was induced by azo initiators of peroxyl radicals. Since interactions of amphotericin B with sterols are essential for its pharmacological and toxic actions, we also studied the effects of cholesterol on the prooxidant and antioxidant properties of amphotericin B. Amphotericin B caused a noncollisional quenching of a characteristic fluorescence of cholesteryl cis-parinarate integrated in liposomes, suggesting the formation of amphotericin B-cholesteryl cis-parinarate complex. This effect of amphotericin B was ablated by increasing concentrations of cholesterol. We found that amphotericin B inhibited oxidation of cis-parinaric acid complexed with human serum albumin [using a water-soluble azo initiator, 2,2'-azobis(2aminopropane)dihydrochloride] and in liposomes [using a lipid-soluble azo initiator, 2,2'-azobis(2,4-dimethylvaleronitrile)]. The inhibitory effect of amphotericin B on 2,2'-azobis(2,4-dimethylvaleronitrile)-induced peroxidation of cis-parinaric acid in liposomes was also diminished by cholesterol. The antioxidant effect of amphotericin B in this model system suggests that amphotericin B does not exert its pharmacological and toxicological responses through a prooxidant effect to cause damage in target cells.
Full Text
The Full Text of this article is available as a PDF (194.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreoli T. E. On the anatomy of amphotericin B-cholesterol pores in lipid bilayer membranes. Kidney Int. 1973 Nov;4(5):337–345. doi: 10.1038/ki.1973.126. [DOI] [PubMed] [Google Scholar]
- Brajtburg J., Elberg S., Schwartz D. R., Vertut-Croquin A., Schlessinger D., Kobayashi G. S., Medoff G. Involvement of oxidative damage in erythrocyte lysis induced by amphotericin B. Antimicrob Agents Chemother. 1985 Feb;27(2):172–176. doi: 10.1128/aac.27.2.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brajtburg J., Powderly W. G., Kobayashi G. S., Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother. 1990 Feb;34(2):183–188. doi: 10.1128/aac.34.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng J. T., Witty R. T., Robinson R. R., Yarger W. E. Amphotericin B nephrotoxicity: increased renal resistance and tubule permeability. Kidney Int. 1982 Dec;22(6):626–633. doi: 10.1038/ki.1982.221. [DOI] [PubMed] [Google Scholar]
- Cutaia M., Bullard S. R., Rudio K., Rounds S. Characteristics of amphotericin B-induced endothelial cell injury. J Lab Clin Med. 1993 Feb;121(2):244–256. [PubMed] [Google Scholar]
- Handelman G. J., van Kuijk F. J., Chatterjee A., Krinsky N. I. Characterization of products formed during the autoxidation of beta-carotene. Free Radic Biol Med. 1991;10(6):427–437. doi: 10.1016/0891-5849(91)90051-4. [DOI] [PubMed] [Google Scholar]
- Kuypers F. A., van den Berg J. J., Schalkwijk C., Roelofsen B., Op den Kamp J. A. Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim Biophys Acta. 1987 Sep 25;921(2):266–274. doi: 10.1016/0005-2760(87)90027-0. [DOI] [PubMed] [Google Scholar]
- Lamy-Freund M. T., Ferreira V. F., Schreier S. Mechanism of inactivation of the polyene antibiotic amphotericin B. Evidence for radical formation in the process of autooxidation. J Antibiot (Tokyo) 1985 Jun;38(6):753–757. doi: 10.7164/antibiotics.38.753. [DOI] [PubMed] [Google Scholar]
- Niki E. Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 1990;186:100–108. doi: 10.1016/0076-6879(90)86095-d. [DOI] [PubMed] [Google Scholar]
- Ozhogina O. A., Kasaikina O. T. Beta-carotene as an interceptor of free radicals. Free Radic Biol Med. 1995 Nov;19(5):575–581. doi: 10.1016/0891-5849(95)00064-5. [DOI] [PubMed] [Google Scholar]
- Palozza P., Calviello G., Bartoli G. M. Prooxidant activity of beta-carotene under 100% oxygen pressure in rat liver microsomes. Free Radic Biol Med. 1995 Dec;19(6):887–892. doi: 10.1016/0891-5849(95)00094-e. [DOI] [PubMed] [Google Scholar]
- Palozza P., Krinsky N. I. The inhibition of radical-initiated peroxidation of microsomal lipids by both alpha-tocopherol and beta-carotene. Free Radic Biol Med. 1991;11(4):407–414. doi: 10.1016/0891-5849(91)90158-y. [DOI] [PubMed] [Google Scholar]
- Palozza P., Moualla S., Krinsky N. I. Effects of beta-carotene and alpha-tocopherol on radical-initiated peroxidation of microsomes. Free Radic Biol Med. 1992;13(2):127–136. doi: 10.1016/0891-5849(92)90074-q. [DOI] [PubMed] [Google Scholar]
- Parasassi T., Giusti A. M., Raimondi M., Ravagnan G., Sapora O., Gratton E. Cholesterol protects the phospholipid bilayer from oxidative damage. Free Radic Biol Med. 1995 Oct;19(4):511–516. doi: 10.1016/0891-5849(95)00038-y. [DOI] [PubMed] [Google Scholar]
- Rickards R. W., Smith R. M., Golding B. T. Macrolide antibiotic studies. XV. The autoxidation of the polyenes of the filipin complex and lagosin. Jpn J Antibiot. 1970 Dec;23(6):603–612. [PubMed] [Google Scholar]
- Sawaya B. P., Briggs J. P., Schnermann J. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol. 1995 Aug;6(2):154–164. doi: 10.1681/ASN.V62154. [DOI] [PubMed] [Google Scholar]
- Sokol-Anderson M. L., Brajtburg J., Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis. 1986 Jul;154(1):76–83. doi: 10.1093/infdis/154.1.76. [DOI] [PubMed] [Google Scholar]
- Tsuchihashi H., Kigoshi M., Iwatsuki M., Niki E. Action of beta-carotene as an antioxidant against lipid peroxidation. Arch Biochem Biophys. 1995 Oct 20;323(1):137–147. doi: 10.1006/abbi.1995.0019. [DOI] [PubMed] [Google Scholar]
- Tsuchiya M., Kagan V. E., Freisleben H. J., Manabe M., Packer L. Antioxidant activity of alpha-tocopherol, beta-carotene, and ubiquinol in membranes: cis-parinaric acid-incorporated liposomes. Methods Enzymol. 1994;234:371–383. doi: 10.1016/0076-6879(94)34107-9. [DOI] [PubMed] [Google Scholar]