Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Feb;108(2):97–103. doi: 10.1289/ehp.0010897

Environmental estrogens induce transcriptionally active estrogen receptor dimers in yeast: activity potentiated by the coactivator RIP140.

C Q Sheeler 1, M W Dudley 1, S A Khan 1
PMCID: PMC1637889  PMID: 10656848

Abstract

We used three yeast genetic systems to investigate the estrogen-like activity of octylphenol (OP), bisphenol-A (BPA), o,p'-DDT, and o, p'-DDE to induce human estrogen receptor (hER) dimerization and transcriptional activation. We have demonstrated that OP, BPA, and o, p'-DDT can induce hER ligand-dependent dimerization using a yeast two-hybrid assay. All three xenoestrogens, plus estradiol, enhanced estrogen response element (ERE)-dependent transcriptional activation of hER. In the presence of receptor interacting protein 140 (RIP140), ERE-dependent activity was dramatically amplified by 100-fold for estradiol, OP, BPA, and o,p'-DDT. A yeast whole-cell [(3)H]estradiol binding assay was developed to determine the site of interaction on the hER. We determined nonspecific binding by parallel incubations run in the presence of 5 microM unlabelled estradiol in PCY2 yeast. At the concentrations tested, unlabeled estradiol, OP, and BPA displaced [(3)H]estradiol in this binding assay, whereas the concentrations of o,p'-DDT and o,p'-DDE tested were insufficient to inhibit binding. Incubating yeast in the presence of increasing concentrations of estradiol and OP (1 microM) or BPA (1 microM) neither blocked nor altered the effect of estradiol on hER activity. We observed no agonistic activity of o,p'-DDE in any of the yeast models used. These results suggest that OP, BPA, and o,p'-DDT exert their estrogen-like activity through the ER in a manner similar to that of estradiol, and the coactivator RIP140 markedly potentiates this activity.

Full text

PDF
97

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. J., Frawley L. S. Octylphenol (OP), an environmental estrogen, stimulates prolactin (PRL) gene expression. Life Sci. 1997;60(17):1457–1465. doi: 10.1016/s0024-3205(97)00097-0. [DOI] [PubMed] [Google Scholar]
  2. Arnold S. F., Robinson M. K., Notides A. C., Guillette L. J., Jr, McLachlan J. A. A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environ Health Perspect. 1996 May;104(5):544–548. doi: 10.1289/ehp.96104544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bicknell R. J., Herbison A. E., Sumpter J. P. Oestrogenic activity of an environmentally persistent alkylphenol in the reproductive tract but not the brain of rodents. J Steroid Biochem Mol Biol. 1995 Jul;54(1-2):7–9. doi: 10.1016/0960-0760(95)00118-j. [DOI] [PubMed] [Google Scholar]
  4. Bigsby R. M., Caperell-Grant A., Madhukar B. V. Xenobiotics released from fat during fasting produce estrogenic effects in ovariectomized mice. Cancer Res. 1997 Mar 1;57(5):865–869. [PubMed] [Google Scholar]
  5. Bitman J., Cecil H. C., Harris S. J., Fries G. F. Estrogenic activity of o,p'-DDT in the mammalian uterus and avian oviduct. Science. 1968 Oct 18;162(3851):371–372. doi: 10.1126/science.162.3851.371. [DOI] [PubMed] [Google Scholar]
  6. Cavaillès V., Dauvois S., L'Horset F., Lopez G., Hoare S., Kushner P. J., Parker M. G. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 1995 Aug 1;14(15):3741–3751. doi: 10.1002/j.1460-2075.1995.tb00044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen C. W., Hurd C., Vorojeikina D. P., Arnold S. F., Notides A. C. Transcriptional activation of the human estrogen receptor by DDT isomers and metabolites in yeast and MCF-7 cells. Biochem Pharmacol. 1997 Apr 25;53(8):1161–1172. doi: 10.1016/s0006-2952(97)00097-x. [DOI] [PubMed] [Google Scholar]
  8. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  9. Chevray P. M., Nathans D. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5789–5793. doi: 10.1073/pnas.89.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crain D. A., Noriega N., Vonier P. M., Arnold S. F., McLachlan J. A., Guillette L. J., Jr Cellular bioavailability of natural hormones and environmental contaminants as a function of serum and cytosolic binding factors. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):261–273. doi: 10.1177/074823379801400116. [DOI] [PubMed] [Google Scholar]
  11. Danzo B. J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ Health Perspect. 1997 Mar;105(3):294–301. doi: 10.1289/ehp.97105294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dodge J. A., Glasebrook A. L., Magee D. E., Phillips D. L., Sato M., Short L. L., Bryant H. U. Environmental estrogens: effects on cholesterol lowering and bone in the ovariectomized rat. J Steroid Biochem Mol Biol. 1996 Oct;59(2):155–161. doi: 10.1016/s0960-0760(96)00104-5. [DOI] [PubMed] [Google Scholar]
  13. Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Forster M. S., Wilder E. L., Heinrichs W. L. Estrogenic behavior of 2(o-chlorophenyl)-2-(p-chlorophenyl)-1,1,1-trichloroethane and its homologues. Biochem Pharmacol. 1975 Oct 1;24(19):1777–1780. doi: 10.1016/0006-2952(75)90456-6. [DOI] [PubMed] [Google Scholar]
  15. Gaido K. W., Leonard L. S., Lovell S., Gould J. C., Babaï D., Portier C. J., McDonnell D. P. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol. 1997 Mar;143(1):205–212. doi: 10.1006/taap.1996.8069. [DOI] [PubMed] [Google Scholar]
  16. Glass C. K., Rose D. W., Rosenfeld M. G. Nuclear receptor coactivators. Curr Opin Cell Biol. 1997 Apr;9(2):222–232. doi: 10.1016/s0955-0674(97)80066-x. [DOI] [PubMed] [Google Scholar]
  17. Hammond B., Katzenellenbogen B. S., Krauthammer N., McConnell J. Estrogenic activity of the insecticide chlordecone (Kepone) and interaction with uterine estrogen receptors. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6641–6645. doi: 10.1073/pnas.76.12.6641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harnish D. C., Evans M. J., Scicchitano M. S., Bhat R. A., Karathanasis S. K. Estrogen regulation of the apolipoprotein AI gene promoter through transcription cofactor sharing. J Biol Chem. 1998 Apr 10;273(15):9270–9278. doi: 10.1074/jbc.273.15.9270. [DOI] [PubMed] [Google Scholar]
  19. Johnson D. C., Sen M., Dey S. K. Differential effects of dichlorodiphenyltrichloroethane analogs, chlordecone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin on establishment of pregnancy in the hypophysectomized rat. Proc Soc Exp Biol Med. 1992 Jan;199(1):42–48. doi: 10.3181/00379727-199-43326. [DOI] [PubMed] [Google Scholar]
  20. Kalkhoven E., Valentine J. E., Heery D. M., Parker M. G. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 1998 Jan 2;17(1):232–243. doi: 10.1093/emboj/17.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krishnan A. V., Stathis P., Permuth S. F., Tokes L., Feldman D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology. 1993 Jun;132(6):2279–2286. doi: 10.1210/endo.132.6.8504731. [DOI] [PubMed] [Google Scholar]
  22. Kumar V., Chambon P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell. 1988 Oct 7;55(1):145–156. doi: 10.1016/0092-8674(88)90017-7. [DOI] [PubMed] [Google Scholar]
  23. Li H., Chen J. D. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem. 1998 Mar 6;273(10):5948–5954. doi: 10.1074/jbc.273.10.5948. [DOI] [PubMed] [Google Scholar]
  24. Lyttle C. R., Damian-Matsumura P., Juul H., Butt T. R. Human estrogen receptor regulation in a yeast model system and studies on receptor agonists and antagonists. J Steroid Biochem Mol Biol. 1992 Aug;42(7):677–685. doi: 10.1016/0960-0760(92)90108-u. [DOI] [PubMed] [Google Scholar]
  25. McBlain W. A. The levo enantiomer of o,p'-DDT inhibits the binding of 17 beta-estradiol to the estrogen receptor. Life Sci. 1987 Jan 12;40(2):215–221. doi: 10.1016/0024-3205(87)90361-4. [DOI] [PubMed] [Google Scholar]
  26. Milligan S. R., Balasubramanian A. V., Kalita J. C. Relative potency of xenobiotic estrogens in an acute in vivo mammalian assay. Environ Health Perspect. 1998 Jan;106(1):23–26. doi: 10.1289/ehp.9810623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nagel S. C., vom Saal F. S., Welshons W. V. The effective free fraction of estradiol and xenoestrogens in human serum measured by whole cell uptake assays: physiology of delivery modifies estrogenic activity. Proc Soc Exp Biol Med. 1998 Mar;217(3):300–309. doi: 10.3181/00379727-217-44236. [DOI] [PubMed] [Google Scholar]
  29. Nagy L., Kao H. Y., Chakravarti D., Lin R. J., Hassig C. A., Ayer D. E., Schreiber S. L., Evans R. M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997 May 2;89(3):373–380. doi: 10.1016/s0092-8674(00)80218-4. [DOI] [PubMed] [Google Scholar]
  30. Nelson J. A. Effects of dichlorodiphenyltrichloroethane (DDT) analogs and polychlorinated biphenyl (PCB) mixtures on 17beta-(3H)estradiol binding to rat uterine receptor. Biochem Pharmacol. 1974 Jan 15;23(2):447–451. doi: 10.1016/0006-2952(74)90436-5. [DOI] [PubMed] [Google Scholar]
  31. Nishikawa J., Saito K., Goto J., Dakeyama F., Matsuo M., Nishihara T. New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol Appl Pharmacol. 1999 Jan 1;154(1):76–83. doi: 10.1006/taap.1998.8557. [DOI] [PubMed] [Google Scholar]
  32. Oñate S. A., Tsai S. Y., Tsai M. J., O'Malley B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24;270(5240):1354–1357. doi: 10.1126/science.270.5240.1354. [DOI] [PubMed] [Google Scholar]
  33. Peters G. A., Khan S. A. Estrogen receptor domains E and F: role in dimerization and interaction with coactivator RIP-140. Mol Endocrinol. 1999 Feb;13(2):286–296. doi: 10.1210/mend.13.2.0244. [DOI] [PubMed] [Google Scholar]
  34. Treuter E., Albrektsen T., Johansson L., Leers J., Gustafsson J. A. A regulatory role for RIP140 in nuclear receptor activation. Mol Endocrinol. 1998 Jun;12(6):864–881. doi: 10.1210/mend.12.6.0123. [DOI] [PubMed] [Google Scholar]
  35. Tyler C. R., Jobling S., Sumpter J. P. Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol. 1998 Jul;28(4):319–361. doi: 10.1080/10408449891344236. [DOI] [PubMed] [Google Scholar]
  36. Wang H., Peters G. A., Zeng X., Tang M., Ip W., Khan S. A. Yeast two-hybrid system demonstrates that estrogen receptor dimerization is ligand-dependent in vivo. J Biol Chem. 1995 Oct 6;270(40):23322–23329. doi: 10.1074/jbc.270.40.23322. [DOI] [PubMed] [Google Scholar]
  37. White R., Jobling S., Hoare S. A., Sumpter J. P., Parker M. G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994 Jul;135(1):175–182. doi: 10.1210/endo.135.1.8013351. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES