Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Feb;108(2):119–123. doi: 10.1289/ehp.00108119

Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus.

E Lindgren 1, L Tälleklint 1, T Polfeldt 1
PMCID: PMC1637900  PMID: 10656851

Abstract

We examined whether a reported northward expansion of the geographic distribution limit of the disease-transmitting tick Ixodes ricinus and an increased tick density between the early 1980s and mid-1990s in Sweden was related to climatic changes. The annual number of days with minimum temperatures above vital bioclimatic thresholds for the tick's life-cycle dynamics were related to tick density in both the early 1980s and the mid-1990s in 20 districts in central and northern Sweden. The winters were markedly milder in all of the study areas in the 1990s as compared to the 1980s. Our results indicate that the reported northern shift in the distribution limit of ticks is related to fewer days during the winter seasons with low minimum temperatures, i.e., below -12 degrees C. At high latitudes, low winter temperatures had the clearest impact on tick distribution. Further south, a combination of mild winters (fewer days with minimum temperatures below -7 degrees C) and extended spring and autumn seasons (more days with minimum temperatures from 5 to 8 degrees C) was related to increases in tick density. We conclude that the relatively mild climate of the 1990s in Sweden is probably one of the primary reasons for the observed increase of density and geographic range of I. ricinus ticks.

Full text

PDF
119

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berglund J., Eitrem R., Ornstein K., Lindberg A., Ringér A., Elmrud H., Carlsson M., Runehagen A., Svanborg C., Norrby R. An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med. 1995 Nov 16;333(20):1319–1327. doi: 10.1056/NEJM199511163332004. [DOI] [PubMed] [Google Scholar]
  2. Bouma M. J., Sondorp H. E., van der Kaay H. J. Climate change and periodic epidemic malaria. Lancet. 1994 Jun 4;343(8910):1440–1440. doi: 10.1016/s0140-6736(94)92569-0. [DOI] [PubMed] [Google Scholar]
  3. Clark D. D. Lower temperature limits for activity of several Ixodid ticks (Acari: Ixodidae): effects of body size and rate of temperature change. J Med Entomol. 1995 Jul;32(4):449–452. doi: 10.1093/jmedent/32.4.449. [DOI] [PubMed] [Google Scholar]
  4. Daniel M., Cerný V., Dusbábek F., Honzáková E., Olejnícek J. Influence of microclimate on the life cycle of the common tick Ixodes ricinus (L.) in an open area in comparison with forest habitats. Folia Parasitol (Praha) 1977;24(2):149–160. [PubMed] [Google Scholar]
  5. Duffy D. C., Campbell S. R. Ambient air temperature as a predictor of activity of adult Ixodes scapularis (Acari: Ixodidae). J Med Entomol. 1994 Jan;31(1):178–180. doi: 10.1093/jmedent/31.1.178. [DOI] [PubMed] [Google Scholar]
  6. Gray J. S., Kahl O., Robertson J. N., Daniel M., Estrada-Peña A., Gettinby G., Jaenson T. G., Jensen P., Jongejan F., Korenberg E. Lyme borreliosis habitat assessment. Zentralbl Bakteriol. 1998 Mar;287(3):211–228. doi: 10.1016/s0934-8840(98)80123-0. [DOI] [PubMed] [Google Scholar]
  7. Gray J. S. Studies on the dynamics of active populations of the sheep tick, Ixodes ricinus L. in Co. Wicklow, Ireland. Acarologia. 1984 Jul;25(2):167–178. [PubMed] [Google Scholar]
  8. Gustafson R., Jaenson T. G., Gardulf A., Mejlon H., Svenungsson B. Prevalence of Borrelia burgdorferi sensu lato infection in Ixodes ricinus in Sweden. Scand J Infect Dis. 1995;27(6):597–601. doi: 10.3109/00365549509047074. [DOI] [PubMed] [Google Scholar]
  9. Hales S., Weinstein P., Souares Y., Woodward A. El Niño and the dynamics of vectorborne disease transmission. Environ Health Perspect. 1999 Feb;107(2):99–102. doi: 10.1289/ehp.9910799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaenson T. G., Tälleklint L., Lundqvist L., Olsen B., Chirico J., Mejlon H. Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden. J Med Entomol. 1994 Mar;31(2):240–256. doi: 10.1093/jmedent/31.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lindsay L. R., Barker I. K., Surgeoner G. A., McEwen S. A., Gillespie T. J., Addison E. M. Survival and development of the different life stages of Ixodes scapularis (Acari: Ixodidae) held within four habitats on Long Point, Ontario, Canada. J Med Entomol. 1998 May;35(3):189–199. doi: 10.1093/jmedent/35.3.189. [DOI] [PubMed] [Google Scholar]
  12. Lindsay L. R., Barker I. K., Surgeoner G. A., McEwen S. A., Gillespie T. J., Robinson J. T. Survival and development of Ixodes scapularis (Acari: Ixodidae) under various climatic conditions in Ontario, Canada. J Med Entomol. 1995 Mar;32(2):143–152. doi: 10.1093/jmedent/32.2.143. [DOI] [PubMed] [Google Scholar]
  13. Martens W. J., Niessen L. W., Rotmans J., Jetten T. H., McMichael A. J. Potential impact of global climate change on malaria risk. Environ Health Perspect. 1995 May;103(5):458–464. doi: 10.1289/ehp.95103458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McEnroe W. D. Winter survival and spring breeding by the fall tick, Ixodes dammini, in Massachusetts (Acarina : Ixodidae). Acarologia. 1984 Oct;25(3):223–229. [PubMed] [Google Scholar]
  15. Mejlon H. A., Jaenson T. G. Seasonal prevalence of Borrelia burgdorferi in Ixodes ricinus in different vegetation types in Sweden. Scand J Infect Dis. 1993;25(4):449–456. doi: 10.3109/00365549309008526. [DOI] [PubMed] [Google Scholar]
  16. Patz J. A., Epstein P. R., Burke T. A., Balbus J. M. Global climate change and emerging infectious diseases. JAMA. 1996 Jan 17;275(3):217–223. [PubMed] [Google Scholar]
  17. Tälleklint L., Jaenson T. G. Increasing geographical distribution and density of Ixodes ricinus (Acari: Ixodidae) in central and northern Sweden. J Med Entomol. 1998 Jul;35(4):521–526. doi: 10.1093/jmedent/35.4.521. [DOI] [PubMed] [Google Scholar]
  18. Tälleklint L., Jaenson T. G. Relationship between Ixodes ricinus density and prevalence of infection with Borrelia-like spirochetes and density of infected ticks. J Med Entomol. 1996 Sep;33(5):805–811. doi: 10.1093/jmedent/33.5.805. [DOI] [PubMed] [Google Scholar]
  19. Tälleklint L., Jaenson T. G. Transmission of Borrelia burgdorferi s.l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (Acari: Ixodidae), in Sweden. J Med Entomol. 1994 Nov;31(6):880–886. doi: 10.1093/jmedent/31.6.880. [DOI] [PubMed] [Google Scholar]
  20. van Sweden B., Mellerio F. Toxic ictal delirium. Biol Psychiatry. 1989 Feb 15;25(4):449–458. doi: 10.1016/0006-3223(89)90198-4. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES