Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Apr;41(4):802–807. doi: 10.1128/aac.41.4.802

Enhanced resistance to Cryptococcus neoformans infection induced by chloroquine in a murine model of meningoencephalitis.

R Mazzolla 1, R Barluzzi 1, A Brozzetti 1, J R Boelaert 1, T Luna 1, S Saleppico 1, F Bistoni 1, E Blasi 1
PMCID: PMC163798  PMID: 9087493

Abstract

Although the pathogenesis of cerebral cryptococcosis is poorly understood, local immune cells, such as microglia and astrocytes, likely play a critical role in containing infection. Chloroquine (CQ) is a weak base that accumulates within acidic vacuoles and increases their pH. Consequently, proteolytic activity of lysosomal enzymes and intracellular iron release/availability are impaired, resulting in decreased availability of nutrients crucial to microorganism survival and growth in the host. We found that CQ enhances BV2 microglial-cell-mediated anticryptococcal activity in vitro. The phenomenon is (i) evident when both unopsonized and opsonized microorganisms are used and (ii) mimicked by NH4Cl, another weak base, and by bafilomycin A1, an inhibitor of vacuolar-type H+-ATPases. In vivo, intracerebral administration of CQ before lethal local challenge with Cryptococcus neoformans results in a significant augmentation of median survival time and a marked reduction of yeast growth in the brain and is associated with the enhancement of local interleukin 1beta (IL-1beta) and IL-6 mRNA transcripts. Overall, these results provide the first evidence that CQ enhances anticryptococcal host defenses.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blasi E., Barluzzi R., Bocchini V., Mazzolla R., Bistoni F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol. 1990 May;27(2-3):229–237. doi: 10.1016/0165-5728(90)90073-v. [DOI] [PubMed] [Google Scholar]
  2. Blasi E., Barluzzi R., Mazzolla R., Bistoni F. Differential host susceptibility to intracerebral infections with Candida albicans and Cryptococcus neoformans. Infect Immun. 1993 Aug;61(8):3476–3481. doi: 10.1128/iai.61.8.3476-3481.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blasi E., Barluzzi R., Mazzolla R., Mosci P., Bistoni F. Experimental model of intracerebral infection with Cryptococcus neoformans: roles of phagocytes and opsonization. Infect Immun. 1992 Sep;60(9):3682–3688. doi: 10.1128/iai.60.9.3682-3688.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blasi E., Barluzzi R., Mazzolla R., Pitzurra L., Puliti M., Saleppico S., Bistoni F. Biomolecular events involved in anticryptococcal resistance in the brain. Infect Immun. 1995 Apr;63(4):1218–1222. doi: 10.1128/iai.63.4.1218-1222.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blasi E., Barluzzi R., Mazzolla R., Tancini B., Saleppico S., Puliti M., Pitzurra L., Bistoni F. Role of nitric oxide and melanogenesis in the accomplishment of anticryptococcal activity by the BV-2 microglial cell line. J Neuroimmunol. 1995 Apr;58(1):111–116. doi: 10.1016/0165-5728(95)00016-u. [DOI] [PubMed] [Google Scholar]
  6. Blasi E., Bartoli A., Barluzzi R., Mazzolla R., Bistoni F. Pattern of cytokine gene expression in brains of mice protected by picolinic acid against lethal intracerebral infection with Candida albicans. J Neuroimmunol. 1994 Jul;52(2):205–213. doi: 10.1016/0165-5728(94)90114-7. [DOI] [PubMed] [Google Scholar]
  7. Blasi E., Mazzolla R., Barluzzi R., Mosci P., Bartoli A., Bistoni F. Intracerebral transfer of an in vitro established microglial cell line: local induction of a protective state against lethal challenge with Candida albicans. J Neuroimmunol. 1991 Jun;32(3):249–257. doi: 10.1016/0165-5728(91)90195-d. [DOI] [PubMed] [Google Scholar]
  8. Blasi E., Mazzolla R., Barluzzi R., Mosci P., Bistoni F. Anticryptococcal resistance in the mouse brain: beneficial effects of local administration of heat-inactivated yeast cells. Infect Immun. 1994 Aug;62(8):3189–3196. doi: 10.1128/iai.62.8.3189-3196.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blasi E., Mazzolla R., Pitzurra L., Barluzzi R., Bistoni F. Protective effect of picolinic acid on mice intracerebrally infected with lethal doses of Candida albicans. Antimicrob Agents Chemother. 1993 Nov;37(11):2422–2426. doi: 10.1128/aac.37.11.2422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blasi E., Puliti M., Pitzurra L., Barluzzi R., Mazzolla R., Adami C., Cox G. W., Bistoni F. Comparative studies on functional and secretory properties of macrophage cell lines derived from different anatomical sites. FEMS Immunol Med Microbiol. 1994 Sep;9(3):207–215. doi: 10.1111/j.1574-695X.1994.tb00495.x. [DOI] [PubMed] [Google Scholar]
  11. Buchmüller-Rouiller Y., Corradin S. B., Smith J., Mauël J. Effect of increasing intravesicular pH on nitrite production and leishmanicidal activity of activated macrophages. Biochem J. 1994 Jul 1;301(Pt 1):243–247. doi: 10.1042/bj3010243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Byrd T. F., Horwitz M. A. Chloroquine inhibits the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. A potential new mechanism for the therapeutic effect of chloroquine against intracellular pathogens. J Clin Invest. 1991 Jul;88(1):351–357. doi: 10.1172/JCI115301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chao C. C., Hu S., Gekker G., Novick W. J., Jr, Remington J. S., Peterson P. K. Effects of cytokines on multiplication of Toxoplasma gondii in microglial cells. J Immunol. 1993 Apr 15;150(8 Pt 1):3404–3410. [PubMed] [Google Scholar]
  14. Chao C. C., Hu S., Molitor T. W., Shaskan E. G., Peterson P. K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992 Oct 15;149(8):2736–2741. [PubMed] [Google Scholar]
  15. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  16. Chuck S. L., Sande M. A. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med. 1989 Sep 21;321(12):794–799. doi: 10.1056/NEJM198909213211205. [DOI] [PubMed] [Google Scholar]
  17. Connolly K. M., Stecher V. J., Danis E., Pruden D. J., LaBrie T. Alteration of interleukin-1 activity and the acute phase response in adjuvant arthritic rats treated with disease modifying antirheumatic drugs. Agents Actions. 1988 Aug;25(1-2):94–105. doi: 10.1007/BF01969100. [DOI] [PubMed] [Google Scholar]
  18. Crowle A. J., May M. H. Inhibition of tubercle bacilli in cultured human macrophages by chloroquine used alone and in combination with streptomycin, isoniazid, pyrazinamide, and two metabolites of vitamin D3. Antimicrob Agents Chemother. 1990 Nov;34(11):2217–2222. doi: 10.1128/aac.34.11.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ertel W., Morrison M. H., Ayala A., Chaudry I. H. Chloroquine attenuates hemorrhagic shock-induced suppression of Kupffer cell antigen presentation and major histocompatibility complex class II antigen expression through blockade of tumor necrosis factor and prostaglandin release. Blood. 1991 Oct 1;78(7):1781–1788. [PubMed] [Google Scholar]
  20. Fabry Z., Raine C. S., Hart M. N. Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol Today. 1994 May;15(5):218–224. doi: 10.1016/0167-5699(94)90247-X. [DOI] [PubMed] [Google Scholar]
  21. Fierz W., Endler B., Reske K., Wekerle H., Fontana A. Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J Immunol. 1985 Jun;134(6):3785–3793. [PubMed] [Google Scholar]
  22. Fontana A., Frei K., Bodmer S., Hofer E. Immune-mediated encephalitis: on the role of antigen-presenting cells in brain tissue. Immunol Rev. 1987 Dec;100:185–201. doi: 10.1111/j.1600-065X.1987.tb00532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Frei K., Malipiero U. V., Leist T. P., Zinkernagel R. M., Schwab M. E., Fontana A. On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol. 1989 Apr;19(4):689–694. doi: 10.1002/eji.1830190418. [DOI] [PubMed] [Google Scholar]
  24. Frei K., Siepl C., Groscurth P., Bodmer S., Schwerdel C., Fontana A. Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol. 1987 Sep;17(9):1271–1278. doi: 10.1002/eji.1830170909. [DOI] [PubMed] [Google Scholar]
  25. Geary T. G., Jensen J. B., Ginsburg H. Uptake of [3H]chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum. Biochem Pharmacol. 1986 Nov 1;35(21):3805–3812. doi: 10.1016/0006-2952(86)90668-4. [DOI] [PubMed] [Google Scholar]
  26. Giulian D. Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res. 1987;18(1):155-71, 132-3. doi: 10.1002/jnr.490180123. [DOI] [PubMed] [Google Scholar]
  27. Giulian D., Baker T. J., Shih L. C., Lachman L. B. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med. 1986 Aug 1;164(2):594–604. doi: 10.1084/jem.164.2.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hidore M. R., Nabavi N., Sonleitner F., Murphy J. W. Murine natural killer cells are fungicidal to Cryptococcus neoformans. Infect Immun. 1991 May;59(5):1747–1754. doi: 10.1128/iai.59.5.1747-1754.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jensen P. E. Protein synthesis in antigen processing. J Immunol. 1988 Oct 15;141(8):2545–2550. [PubMed] [Google Scholar]
  30. Krogstad D. J., Schlesinger P. H. Acid-vesicle function, intracellular pathogens, and the action of chloroquine against Plasmodium falciparum. N Engl J Med. 1987 Aug 27;317(9):542–549. doi: 10.1056/NEJM198708273170905. [DOI] [PubMed] [Google Scholar]
  31. Lee S. C., Dickson D. W., Brosnan C. F., Casadevall A. Human astrocytes inhibit Cryptococcus neoformans growth by a nitric oxide-mediated mechanism. J Exp Med. 1994 Jul 1;180(1):365–369. doi: 10.1084/jem.180.1.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lieberman A. P., Pitha P. M., Shin H. S., Shin M. L. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6348–6352. doi: 10.1073/pnas.86.16.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miller M. F., Mitchell T. G. Killing of Cryptococcus neoformans strains by human neutrophils and monocytes. Infect Immun. 1991 Jan;59(1):24–28. doi: 10.1128/iai.59.1.24-28.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mody C. H., Lipscomb M. F., Street N. E., Toews G. B. Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J Immunol. 1990 Feb 15;144(4):1472–1477. [PubMed] [Google Scholar]
  35. Newman S. L., Gootee L., Brunner G., Deepe G. S., Jr Chloroquine induces human macrophage killing of Histoplasma capsulatum by limiting the availability of intracellular iron and is therapeutic in a murine model of histoplasmosis. J Clin Invest. 1994 Apr;93(4):1422–1429. doi: 10.1172/JCI117119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Poole B., Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981 Sep;90(3):665–669. doi: 10.1083/jcb.90.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Seglen P. O. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:737–764. doi: 10.1016/s0076-6879(83)96063-9. [DOI] [PubMed] [Google Scholar]
  38. Sperber K., Kalb T. H., Stecher V. J., Banerjee R., Mayer L. Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes. AIDS Res Hum Retroviruses. 1993 Jan;9(1):91–98. doi: 10.1089/aid.1993.9.91. [DOI] [PubMed] [Google Scholar]
  39. Titus E. O. Recent developments in the understanding of the pharmacokinetics and mechanism of action of chloroquine. Ther Drug Monit. 1989;11(4):369–379. [PubMed] [Google Scholar]
  40. Watabe K., Osborne D., Kim S. U. Phagocytic activity of human adult astrocytes and oligodendrocytes in culture. J Neuropathol Exp Neurol. 1989 Sep;48(5):499–506. doi: 10.1097/00005072-198909000-00001. [DOI] [PubMed] [Google Scholar]
  41. Wernsdorfer W. H., Payne D. The dynamics of drug resistance in Plasmodium falciparum. Pharmacol Ther. 1991;50(1):95–121. doi: 10.1016/0163-7258(91)90074-v. [DOI] [PubMed] [Google Scholar]
  42. Zielasek J., Tausch M., Toyka K. V., Hartung H. P. Production of nitrite by neonatal rat microglial cells/brain macrophages. Cell Immunol. 1992 Apr 15;141(1):111–120. doi: 10.1016/0008-8749(92)90131-8. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES