Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Apr;41(4):818–822. doi: 10.1128/aac.41.4.818

An axenic amastigote system for drug screening.

H L Callahan 1, A C Portal 1, R Devereaux 1, M Grogl 1
PMCID: PMC163801  PMID: 9087496

Abstract

Currently available primary screens for selection of candidate antileishmanial compounds are not ideal. The choices include screens that are designed to closely reflect the situation in vivo but are labor-intensive and expensive (intracellular amastigotes and animal models) and screens that are designed to facilitate rapid testing of a large number of drugs but do not use the clinically relevant parasite stage (promastigote model). The advent of successful in vitro culture of axenic amastigotes permits the development of a primary screen which is quick and easy like the promastigote screen but still representative of the situation in vivo, since it uses the relevant parasite stage. We have established an axenic amastigote drug screening system using a Leishmania mexicana strain (strain M379). A comparison of the 50% inhibitory concentration (IC50) drug sensitivity profiles of M379 promastigotes, intracellular amastigotes, and axenic amastigotes for six clinically relevant antileishmanial drugs (sodium stibogluconate, meglumine antimoniate, pentamidine, paromomycin, amphotericin B, WR6026) showed that M379 axenic amastigotes are a good model for a primary drug screen. Promastigote and intracellular amastigote IC50s differed for four of the six drugs tested by threefold or more; axenic amastigote and intracellular amastigote IC50s differed by twofold for only one drug. This shows that the axenic amastigote susceptibility to clinically used reference drugs is comparable to the susceptibility of amastigotes in macrophages. These data also suggest that for the compounds tested, susceptibility is intrinsic to the parasite stage. This contradicts previous hypotheses that suggested that the activities of antimonial agents against intracellular amastigotes were solely a function of the macrophage.

Full Text

The Full Text of this article is available as a PDF (197.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashford R. W., Desjeux P., Deraadt P. Estimation of population at risk of infection and number of cases of Leishmaniasis. Parasitol Today. 1992 Mar;8(3):104–105. doi: 10.1016/0169-4758(92)90249-2. [DOI] [PubMed] [Google Scholar]
  2. Assefa D., Worku Y., Skoglund G. Protein kinase activities in Leishmania aethiopica: control by growth, transformation and inhibitors. Biochim Biophys Acta. 1995 Apr 24;1270(2-3):157–162. doi: 10.1016/0925-4439(94)00080-a. [DOI] [PubMed] [Google Scholar]
  3. Bahr V., Stierhof Y. D., Ilg T., Demar M., Quinten M., Overath P. Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol. 1993 Mar;58(1):107–121. doi: 10.1016/0166-6851(93)90095-f. [DOI] [PubMed] [Google Scholar]
  4. Bates P. A. Characterization of developmentally-regulated nucleases in promastigotes and amastigotes of Leishmania mexicana. FEMS Microbiol Lett. 1993 Feb 15;107(1):53–58. doi: 10.1016/0378-1097(93)90353-4. [DOI] [PubMed] [Google Scholar]
  5. Bates P. A. Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology. 1994 Jan;108(Pt 1):1–9. doi: 10.1017/s0031182000078458. [DOI] [PubMed] [Google Scholar]
  6. Bates P. A., Robertson C. D., Tetley L., Coombs G. H. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology. 1992 Oct;105(Pt 2):193–202. doi: 10.1017/s0031182000074102. [DOI] [PubMed] [Google Scholar]
  7. Bates P. A., Tetley L. Leishmania mexicana: induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Exp Parasitol. 1993 Jun;76(4):412–423. doi: 10.1006/expr.1993.1050. [DOI] [PubMed] [Google Scholar]
  8. Bates P. A. The developmental biology of Leishmania promastigotes. Exp Parasitol. 1994 Sep;79(2):215–218. doi: 10.1006/expr.1994.1084. [DOI] [PubMed] [Google Scholar]
  9. Bell C. A., Hall J. E., Kyle D. E., Grogl M., Ohemeng K. A., Allen M. A., Tidwell R. R. Structure-activity relationships of analogs of pentamidine against Plasmodium falciparum and Leishmania mexicana amazonensis. Antimicrob Agents Chemother. 1990 Jul;34(7):1381–1386. doi: 10.1128/aac.34.7.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berg K., Zhai L., Chen M., Kharazmi A., Owen T. C. The use of a water-soluble formazan complex to quantitate the cell number and mitochondrial function of Leishmania major promastigotes. Parasitol Res. 1994;80(3):235–239. doi: 10.1007/BF00932680. [DOI] [PubMed] [Google Scholar]
  11. Berman J. D. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies. Rev Infect Dis. 1988 May-Jun;10(3):560–586. doi: 10.1093/clinids/10.3.560. [DOI] [PubMed] [Google Scholar]
  12. Berman J. D., Chulay J. D., Hendricks L. D., Oster C. N. Susceptibility of clinically sensitive and resistant Leishmania to pentavalent antimony in vitro. Am J Trop Med Hyg. 1982 May;31(3 Pt 1):459–465. doi: 10.4269/ajtmh.1982.31.459. [DOI] [PubMed] [Google Scholar]
  13. Berman J. D., Gallalee J. V., Hansen B. D. Leishmania mexicana: uptake of sodium stibogluconate (Pentostam) and pentamidine by parasite and macrophages. Exp Parasitol. 1987 Aug;64(1):127–131. doi: 10.1016/0014-4894(87)90018-x. [DOI] [PubMed] [Google Scholar]
  14. Berman J. D., Gallalee J. V. Semiautomated assessment of in vitro activity of potential antileishmanial drugs. Antimicrob Agents Chemother. 1985 Dec;28(6):723–726. doi: 10.1128/aac.28.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Berman J. D., Lee L. S. Activity of antileishmanial agents against amastigotes in human monocyte-derived macrophages and in mouse peritoneal macrophages. J Parasitol. 1984 Apr;70(2):220–225. [PubMed] [Google Scholar]
  16. Berman J. D., Wyler D. J. An in vitro model for investigation of chemotherapeutic agents in leishmaniasis. J Infect Dis. 1980 Jul;142(1):83–86. doi: 10.1093/infdis/142.1.83. [DOI] [PubMed] [Google Scholar]
  17. Bernard E. M., Donnelly H. J., Maher M. P., Armstrong D. Use of a new bioassay to study pentamidine pharmacokinetics. J Infect Dis. 1985 Oct;152(4):750–754. doi: 10.1093/infdis/152.4.750. [DOI] [PubMed] [Google Scholar]
  18. Bijovsky A. T. Leishmania mexicana: the influence of slightly elevated temperature on the ultrastructure of axenic amastigote-like forms. Parasitol Res. 1994;80(8):696–698. doi: 10.1007/BF00932956. [DOI] [PubMed] [Google Scholar]
  19. Bodley A. L., McGarry M. W., Shapiro T. A. Drug cytotoxicity assay for African trypanosomes and Leishmania species. J Infect Dis. 1995 Oct;172(4):1157–1159. doi: 10.1093/infdis/172.4.1157. [DOI] [PubMed] [Google Scholar]
  20. Bryceson A. D., Chulay J. D., Ho M., Mugambii M., Were J. B., Muigai R., Chunge C., Gachihi G., Meme J., Anabwani G. Visceral leishmaniasis unresponsive to antimonial drugs. I. Clinical and immunological studies. Trans R Soc Trop Med Hyg. 1985;79(5):700–704. doi: 10.1016/0035-9203(85)90197-x. [DOI] [PubMed] [Google Scholar]
  21. Bryceson A. D., Chulay J. D., Mugambi M., Were J. B., Gachihi G., Chunge C. N., Muigai R., Bhatt S. M., Ho M., Spencer H. C. Visceral leishmaniasis unresponsive to antimonial drugs. II. Response to high dosage sodium stibogluconate or prolonged treatment with pentamidine. Trans R Soc Trop Med Hyg. 1985;79(5):705–714. doi: 10.1016/0035-9203(85)90199-3. [DOI] [PubMed] [Google Scholar]
  22. Callahan H. L., Beverley S. M. Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J Biol Chem. 1991 Oct 5;266(28):18427–18430. [PubMed] [Google Scholar]
  23. Callahan H. L., Kelley C., Pereira T., Grogl M. Microtubule inhibitors: structure-activity analyses suggest rational models to identify potentially active compounds. Antimicrob Agents Chemother. 1996 Apr;40(4):947–952. doi: 10.1128/aac.40.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Castilla J. J., Sanchez-Moreno M., Mesa C., Osuna A. Leishmania donovani: in vitro culture and [1H] NMR characterization of amastigote-like forms. Mol Cell Biochem. 1995 Jan 26;142(2):89–97. doi: 10.1007/BF00928929. [DOI] [PubMed] [Google Scholar]
  25. Chang K. P. Human cutaneous lieshmania in a mouse macrophage line: propagation and isolation of intracellular parasites. Science. 1980 Sep 12;209(4462):1240–1242. doi: 10.1126/science.7403880. [DOI] [PubMed] [Google Scholar]
  26. Charest H., Matlashewski G. Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol. 1994 May;14(5):2975–2984. doi: 10.1128/mcb.14.5.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Chulay J. D., Fleckenstein L., Smith D. H. Pharmacokinetics of antimony during treatment of visceral leishmaniasis with sodium stibogluconate or meglumine antimoniate. Trans R Soc Trop Med Hyg. 1988;82(1):69–72. [PubMed] [Google Scholar]
  28. Chunge C. N., Gachihi G., Muigai R., Wasunna K., Rashid J. R., Chulay J. D., Anabwani G., Oster C. N., Bryceson A. D. Visceral leishmaniasis unresponsive to antimonial drugs. III. Successful treatment using a combination of sodium stibogluconate plus allopurinol. Trans R Soc Trop Med Hyg. 1985;79(5):715–718. doi: 10.1016/0035-9203(85)90200-7. [DOI] [PubMed] [Google Scholar]
  29. Coombs G. H., Craft J. A., Hart D. T. A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Mol Biochem Parasitol. 1982 Mar;5(3):199–211. doi: 10.1016/0166-6851(82)90021-4. [DOI] [PubMed] [Google Scholar]
  30. Croft S. L., Neame K. D., Homewood C. A. Accumulation of [125Sb]sodium stibogluconate by Leishmania mexicana amazonensis and Leishmania donovani in vitro. Comp Biochem Physiol C. 1981;68C(1):95–98. doi: 10.1016/0306-4492(81)90043-5. [DOI] [PubMed] [Google Scholar]
  31. Dell K. R., Engel J. N. Stage-specific regulation of protein phosphorylation in Leishmania major. Mol Biochem Parasitol. 1994 Apr;64(2):283–292. doi: 10.1016/0166-6851(94)00030-1. [DOI] [PubMed] [Google Scholar]
  32. Doyle P. S., Engel J. C., Pimenta P. F., da Silva P. P., Dwyer D. M. Leishmania donovani: long-term culture of axenic amastigotes at 37 degrees C. Exp Parasitol. 1991 Oct;73(3):326–334. doi: 10.1016/0014-4894(91)90104-5. [DOI] [PubMed] [Google Scholar]
  33. Eperon S., McMahon-Pratt D. Extracellular cultivation and morphological characterization of amastigote-like forms of Leishmania panamensis and L. braziliensis. J Protozool. 1989 Sep-Oct;36(5):502–510. doi: 10.1111/j.1550-7408.1989.tb01086.x. [DOI] [PubMed] [Google Scholar]
  34. Fong D., Chan M. M., Rodriguez R., Gately L. J., Berman J. D., Grogl M. Paromomycin resistance in Leishmania tropica: lack of correlation with mutation in the small subunit ribosomal RNA gene. Am J Trop Med Hyg. 1994 Dec;51(6):758–766. doi: 10.4269/ajtmh.1994.51.758. [DOI] [PubMed] [Google Scholar]
  35. Gebre-Hiwot A., Tadesse G., Croft S. L., Frommel D. An in vitro model for screening antileishmanial drugs: the human leukaemia monocyte cell line, THP-1. Acta Trop. 1992 Aug;51(3-4):237–245. doi: 10.1016/0001-706x(92)90042-v. [DOI] [PubMed] [Google Scholar]
  36. Grogl M., Thomason T. N., Franke E. D. Drug resistance in leishmaniasis: its implication in systemic chemotherapy of cutaneous and mucocutaneous disease. Am J Trop Med Hyg. 1992 Jul;47(1):117–126. doi: 10.4269/ajtmh.1992.47.117. [DOI] [PubMed] [Google Scholar]
  37. Grögl M., Oduola A. M., Cordero L. D., Kyle D. E. Leishmania spp.: development of pentostam-resistant clones in vitro by discontinuous drug exposure. Exp Parasitol. 1989 Jul;69(1):78–90. doi: 10.1016/0014-4894(89)90173-2. [DOI] [PubMed] [Google Scholar]
  38. Gueiros-Filho F. J., Beverley S. M. On the introduction of genetically modified Leishmania outside the laboratory. Exp Parasitol. 1994 Jun;78(4):425–428. doi: 10.1006/expr.1994.1048. [DOI] [PubMed] [Google Scholar]
  39. Hart D. T., Coombs G. H. Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp Parasitol. 1982 Dec;54(3):397–409. doi: 10.1016/0014-4894(82)90049-2. [DOI] [PubMed] [Google Scholar]
  40. Ilg T., Harbecke D., Overath P. The lysosomal gp63-related protein in Leishmania mexicana amastigotes is a soluble metalloproteinase with an acidic pH optimum. FEBS Lett. 1993 Jul 19;327(1):103–107. doi: 10.1016/0014-5793(93)81049-6. [DOI] [PubMed] [Google Scholar]
  41. Jackson J. E., Tally J. D., Ellis W. Y., Mebrahtu Y. B., Lawyer P. G., Were J. B., Reed S. G., Panisko D. M., Limmer B. L. Quantitative in vitro drug potency and drug susceptibility evaluation of Leishmania ssp. from patients unresponsive to pentavalent antimony therapy. Am J Trop Med Hyg. 1990 Nov;43(5):464–480. doi: 10.4269/ajtmh.1990.43.464. [DOI] [PubMed] [Google Scholar]
  42. Jha T. K., Giri Y. N., Singh T. K., Jha S. Use of amphotericin B in drug-resistant cases of visceral leishmaniasis in north Bihar, India. Am J Trop Med Hyg. 1995 Jun;52(6):536–538. doi: 10.4269/ajtmh.1995.52.536. [DOI] [PubMed] [Google Scholar]
  43. Mattock N. M., Peters W. The experimental chemotherapy of leishmaniasis. I: Techniques for the study of drug action in tissue culture. Ann Trop Med Parasitol. 1975 Sep;69(3):349–357. [PubMed] [Google Scholar]
  44. Meade J. C., Glaser T. A., Bonventre P. F., Mukkada A. J. Enzymes of carbohydrate metabolism in Leishmania donovani amastigotes. J Protozool. 1984 Feb;31(1):156–161. doi: 10.1111/j.1550-7408.1984.tb04307.x. [DOI] [PubMed] [Google Scholar]
  45. Mebrahtu Y., Lawyer P., Githure J., Were J. B., Muigai R., Hendricks L., Leeuwenburg J., Koech D., Roberts C. Visceral leishmaniasis unresponsive to pentostam caused by Leishmania tropica in Kenya. Am J Trop Med Hyg. 1989 Sep;41(3):289–294. doi: 10.4269/ajtmh.1989.41.289. [DOI] [PubMed] [Google Scholar]
  46. Moreira E. S., Guerra J. B., Petrillo-Peixoto M. de L. Glucantime resistant Leishmania promastigotes are sensitive to pentostam. Rev Soc Bras Med Trop. 1992 Oct-Dec;25(4):247–250. doi: 10.1590/s0037-86821992000400006. [DOI] [PubMed] [Google Scholar]
  47. Moreira E. S., Petrillo-Peixoto M. L. In vitro activity of meglumine antimoniate, a pentavalent antimonial drug, on Leishmania promastigotes. Braz J Med Biol Res. 1991;24(5):459–469. [PubMed] [Google Scholar]
  48. Mottram J. C., Coombs G. H. Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol. 1985 Apr;59(2):151–160. doi: 10.1016/0014-4894(85)90067-0. [DOI] [PubMed] [Google Scholar]
  49. Neal R. A., Allen S., McCoy N., Olliaro P., Croft S. L. The sensitivity of Leishmania species to aminosidine. J Antimicrob Chemother. 1995 May;35(5):577–584. doi: 10.1093/jac/35.5.577. [DOI] [PubMed] [Google Scholar]
  50. Neal R. A., Croft S. L. An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. J Antimicrob Chemother. 1984 Nov;14(5):463–475. doi: 10.1093/jac/14.5.463. [DOI] [PubMed] [Google Scholar]
  51. North M. J., Coombs G. H. Proteinases of Leishmania mexicana amastigotes and promastigotes: analysis by gel electrophoresis. Mol Biochem Parasitol. 1981 Sep;3(5):293–300. doi: 10.1016/0166-6851(81)90003-7. [DOI] [PubMed] [Google Scholar]
  52. Pan A. A., Duboise S. M., Eperon S., Rivas L., Hodgkinson V., Traub-Cseko Y., McMahon-Pratt D. Developmental life cycle of Leishmania--cultivation and characterization of cultured extracellular amastigotes. J Eukaryot Microbiol. 1993 Mar-Apr;40(2):213–223. doi: 10.1111/j.1550-7408.1993.tb04906.x. [DOI] [PubMed] [Google Scholar]
  53. Pan A. A. Leishmania mexicana: serial cultivation of intracellular stages in a cell-free medium. Exp Parasitol. 1984 Aug;58(1):72–80. doi: 10.1016/0014-4894(84)90022-5. [DOI] [PubMed] [Google Scholar]
  54. Pan A. A., Pan S. C. Leishmania mexicana: comparative fine structure of amastigotes and promastigotes in vitro and in vivo. Exp Parasitol. 1986 Oct;62(2):254–265. doi: 10.1016/0014-4894(86)90030-5. [DOI] [PubMed] [Google Scholar]
  55. Pral E. M., Bijovsky A. T., Balanco J. M., Alfieri S. C. Leishmania mexicana: proteinase activities and megasomes in axenically cultivated amastigote-like forms. Exp Parasitol. 1993 Aug;77(1):62–73. doi: 10.1006/expr.1993.1061. [DOI] [PubMed] [Google Scholar]
  56. Rainey P. M., Spithill T. W., McMahon-Pratt D., Pan A. A. Biochemical and molecular characterization of Leishmania pifanoi amastigotes in continuous axenic culture. Mol Biochem Parasitol. 1991 Nov;49(1):111–118. doi: 10.1016/0166-6851(91)90134-r. [DOI] [PubMed] [Google Scholar]
  57. Rees P. H., Keating M. I., Kager P. A., Hockmeyer W. T. Renal clearance of pentavalent antimony (sodium stibogluconate). Lancet. 1980 Aug 2;2(8188):226–229. doi: 10.1016/s0140-6736(80)90120-8. [DOI] [PubMed] [Google Scholar]
  58. Roberts W. L., Berman J. D., Rainey P. M. In vitro antileishmanial properties of tri- and pentavalent antimonial preparations. Antimicrob Agents Chemother. 1995 Jun;39(6):1234–1239. doi: 10.1128/aac.39.6.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Roberts W. L., Rainey P. M. Antileishmanial activity of sodium stibogluconate fractions. Antimicrob Agents Chemother. 1993 Sep;37(9):1842–1846. doi: 10.1128/aac.37.9.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Roberts W. L., Rainey P. M. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy. Anal Biochem. 1993 May 15;211(1):1–6. doi: 10.1006/abio.1993.1223. [DOI] [PubMed] [Google Scholar]
  61. Robertson C. D., Coombs G. H. Characterisation of three groups of cysteine proteinases in the amastigotes of Leishmania mexicana mexicana. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):269–276. doi: 10.1016/0166-6851(90)90170-q. [DOI] [PubMed] [Google Scholar]
  62. Robertson C. D., Coombs G. H. Stage-specific proteinases of Leishmania mexicana mexicana promastigotes. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):127–132. doi: 10.1111/j.1574-6968.1992.tb05301.x. [DOI] [PubMed] [Google Scholar]
  63. Sacks D. L., Kenney R. T., Kreutzer R. D., Jaffe C. L., Gupta A. K., Sharma M. C., Sinha S. P., Neva F. A., Saran R. Indian kala-azar caused by Leishmania tropica. Lancet. 1995 Apr 15;345(8955):959–961. doi: 10.1016/s0140-6736(95)90703-3. [DOI] [PubMed] [Google Scholar]
  64. Schneider P., Rosat J. P., Bouvier J., Louis J., Bordier C. Leishmania major: differential regulation of the surface metalloprotease in amastigote and promastigote stages. Exp Parasitol. 1992 Sep;75(2):196–206. doi: 10.1016/0014-4894(92)90179-e. [DOI] [PubMed] [Google Scholar]
  65. Taylor D. R., Williams G. T. Differentiation and limited proliferation of isolated Leishmania mexicana amastigotes at 27 degrees C. Acta Trop. 1991 Dec;50(2):141–150. doi: 10.1016/0001-706x(91)90007-7. [DOI] [PubMed] [Google Scholar]
  66. Thakur C. P., Kumar M., Pandey A. K. Comparison of regimes of treatment of antimony-resistant kala-azar patients: a randomized study. Am J Trop Med Hyg. 1991 Oct;45(4):435–441. doi: 10.4269/ajtmh.1991.45.435. [DOI] [PubMed] [Google Scholar]
  67. Thakur C. P., Sinha G. P., Pandey A. K., Barat D., Sinha P. K. Amphotericin B in resistant kala-azar in Bihar. Natl Med J India. 1993 Mar-Apr;6(2):57–60. [PubMed] [Google Scholar]
  68. Ullman B., Carrero-Valenzuela E., Coons T. Leishmania donovani: isolation and characterization of sodium stibogluconate (Pentostam)-resistant cell lines. Exp Parasitol. 1989 Aug;69(2):157–163. doi: 10.1016/0014-4894(89)90184-7. [DOI] [PubMed] [Google Scholar]
  69. al-Bashir N. T., Rassam M. B., al-Rawi B. M. Axenic cultivation of amastigotes of Leishmania donovani and Leishmania major and their infectivity. Ann Trop Med Parasitol. 1992 Oct;86(5):487–502. doi: 10.1080/00034983.1992.11812698. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES