Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Apr;108(4):315–321. doi: 10.1289/ehp.00108315

Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale.

A H Havelaar 1, A E De Hollander 1, P F Teunis 1, E G Evers 1, H J Van Kranen 1, J F Versteegh 1, J E Van Koten 1, W Slob 1
PMCID: PMC1638014  PMID: 10753089

Abstract

To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the production of bromate. We applied clinical, epidemiologic, and toxicologic data on morbidity and mortality to calculate the net health benefit in DALYs. We estimated the median risk of infection with C. parvum as 10(-3)/person-year. Ozonation reduces the median risk in the baseline approximately 7-fold, but bromate is produced in a concentration above current guideline levels. However, the health benefits of preventing gastroenteritis in the general population and premature death in patients with acquired immunodeficiency syndrome outweigh health losses by premature death from renal cell cancer by a factor of > 10. The net benefit is approximately 1 DALY/million person-years. The application of DALYs in principle allows us to more explicitly compare the public health risks and benefits of different management options. In practice, the application of DALYs may be hampered by the substantial degree of uncertainty, as is typical for risk assessment.

Full text

PDF
315

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Colford J. M., Jr, Tager I. B., Hirozawa A. M., Lemp G. F., Aragon T., Petersen C. Cryptosporidiosis among patients infected with human immunodeficiency virus. Factors related to symptomatic infection and survival. Am J Epidemiol. 1996 Nov 1;144(9):807–816. doi: 10.1093/oxfordjournals.aje.a009015. [DOI] [PubMed] [Google Scholar]
  2. Damhuis R. A., Blom J. H. The influence of age on treatment choice and survival in 735 patients with renal carcinoma. Br J Urol. 1995 Feb;75(2):143–147. doi: 10.1111/j.1464-410x.1995.tb07301.x. [DOI] [PubMed] [Google Scholar]
  3. DeAngelo A. B., George M. H., Kilburn S. R., Moore T. M., Wolf D. C. Carcinogenicity of potassium bromate administered in the drinking water to male B6C3F1 mice and F344/N rats. Toxicol Pathol. 1998 Sep-Oct;26(5):587–594. doi: 10.1177/019262339802600501. [DOI] [PubMed] [Google Scholar]
  4. DuPont H. L., Chappell C. L., Sterling C. R., Okhuysen P. C., Rose J. B., Jakubowski W. The infectivity of Cryptosporidium parvum in healthy volunteers. N Engl J Med. 1995 Mar 30;332(13):855–859. doi: 10.1056/NEJM199503303321304. [DOI] [PubMed] [Google Scholar]
  5. Finch G. R., Black E. K., Gyürék L., Belosevic M. Ozone inactivation of Cryptosporidium parvum in demand-free phosphate buffer determined by in vitro excystation and animal infectivity. Appl Environ Microbiol. 1993 Dec;59(12):4203–4210. doi: 10.1128/aem.59.12.4203-4210.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haas C. N. Estimation of risk due to low doses of microorganisms: a comparison of alternative methodologies. Am J Epidemiol. 1983 Oct;118(4):573–582. doi: 10.1093/oxfordjournals.aje.a113662. [DOI] [PubMed] [Google Scholar]
  7. Hoxie N. J., Davis J. P., Vergeront J. M., Nashold R. D., Blair K. A. Cryptosporidiosis-associated mortality following a massive waterborne outbreak in Milwaukee, Wisconsin. Am J Public Health. 1997 Dec;87(12):2032–2035. doi: 10.2105/ajph.87.12.2032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kurokawa Y., Hayashi Y., Maekawa A., Takahashi M., Kokubo T., Odashima S. Carcinogenicity of potassium bromate administered orally to F344 rats. J Natl Cancer Inst. 1983 Nov;71(5):965–972. [PubMed] [Google Scholar]
  9. Kurokawa Y., Maekawa A., Takahashi M., Hayashi Y. Toxicity and carcinogenicity of potassium bromate--a new renal carcinogen. Environ Health Perspect. 1990 Jul;87:309–335. doi: 10.1289/ehp.9087309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kurokawa Y., Takayama S., Konishi Y., Hiasa Y., Asahina S., Takahashi M., Maekawa A., Hayashi Y. Long-term in vivo carcinogenicity tests of potassium bromate, sodium hypochlorite, and sodium chlorite conducted in Japan. Environ Health Perspect. 1986 Nov;69:221–235. doi: 10.1289/ehp.8669221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mac Kenzie W. R., Hoxie N. J., Proctor M. E., Gradus M. S., Blair K. A., Peterson D. E., Kazmierczak J. J., Addiss D. G., Fox K. R., Rose J. B. A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med. 1994 Jul 21;331(3):161–167. doi: 10.1056/NEJM199407213310304. [DOI] [PubMed] [Google Scholar]
  12. MacKenzie W. R., Kazmierczak J. J., Davis J. P. An outbreak of cryptosporidiosis associated with a resort swimming pool. Epidemiol Infect. 1995 Dec;115(3):545–553. doi: 10.1017/s0950268800058714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McGowan I., Hawkins A. S., Weller I. V. The natural history of cryptosporidial diarrhoea in HIV-infected patients. AIDS. 1993 Mar;7(3):349–354. doi: 10.1097/00002030-199303000-00007. [DOI] [PubMed] [Google Scholar]
  14. Nord E. The person-trade-off approach to valuing health care programs. Med Decis Making. 1995 Jul-Sep;15(3):201–208. doi: 10.1177/0272989X9501500302. [DOI] [PubMed] [Google Scholar]
  15. Okhuysen P. C., Chappell C. L., Sterling C. R., Jakubowski W., DuPont H. L. Susceptibility and serologic response of healthy adults to reinfection with Cryptosporidium parvum. Infect Immun. 1998 Feb;66(2):441–443. doi: 10.1128/iai.66.2.441-443.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perz J. F., Ennever F. K., Le Blancq S. M. Cryptosporidium in tap water: comparison of predicted risks with observed levels of disease. Am J Epidemiol. 1998 Feb 1;147(3):289–301. doi: 10.1093/oxfordjournals.aje.a009449. [DOI] [PubMed] [Google Scholar]
  17. Richardson A. J., Frankenberg R. A., Buck A. C., Selkon J. B., Colbourne J. S., Parsons J. W., Mayon-White R. T. An outbreak of waterborne cryptosporidiosis in Swindon and Oxfordshire. Epidemiol Infect. 1991 Dec;107(3):485–495. doi: 10.1017/s0950268800049189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Slob W., Pieters M. N. A probabilistic approach for deriving acceptable human intake limits and human health risks from toxicological studies: general framework. Risk Anal. 1998 Dec;18(6):787–798. doi: 10.1023/b:rian.0000005924.18154.60. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES