Abstract
Adaptive resistance following the first exposure to aminoglycosides is a recently described in vitro phenomenon in Pseudomonas aeruginosa and other aerobic gram-negative bacilli. We investigated the in vivo relevance of adaptive resistance in P. aeruginosa following a single dose of amikacin in the experimental rabbit endocarditis model. Rabbits with P. aeruginosa endocarditis received either no therapy (control) or a single intravenous (i.v.) dose of amikacin (80 mg/kg of body weight) at 24 h postinfection, after which they were sacrificed at 5, 8, 12, 16, or 24 h postdose. Excised aortic vegetations were subsequently exposed ex vivo to amikacin at 2.5, 5, 10 or 20 times the MIC for 90 min. In vivo adaptive resistance was identified when amikacin-induced pseudomonal killing within excised aortic vegetations was less in animals receiving single-dose amikacin in vivo than in vegetations from control animals not receiving amikacin in vivo. Maximal adaptive resistance occurred between 8 and 16 h after the in vivo amikacin dose, with complete refractoriness to ex vivo killing by amikacin seen at 12 h postdose. By 24 h postdose, bacteria within excised vegetations had partially recovered their initial amikacin susceptibility. In a parallel treatment study, we demonstrated that amikacin given once daily (but not twice daily) at a total dose of 80 mg/kg i.v. for 1-day treatment significantly reduced pseudomonal densities within aortic vegetations versus those in untreated controls. When therapy was continued for 3 days with the same total daily dose (80 mg/kg/day), amikacin given once or twice daily significantly reduced intravegetation pseudomonal densities versus those in controls. However, amikacin given once daily was still more effective than the twice-daily regimen. These data confirm the induction of aminoglycoside adaptive resistance in vivo and further support the advantages of once-daily aminoglycoside dosing regimens in the treatment of serious pseudomonal infections.
Full Text
The Full Text of this article is available as a PDF (171.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barclay M. L., Begg E. J., Chambers S. T. Adaptive resistance following single doses of gentamicin in a dynamic in vitro model. Antimicrob Agents Chemother. 1992 Sep;36(9):1951–1957. doi: 10.1128/aac.36.9.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bayer A. S., Crowell D., Nast C. C., Norman D. C., Borrelli R. L. Intravegetation antimicrobial distribution in aortic endocarditis analyzed by computer-generated model. Implications for treatment. Chest. 1990 Mar;97(3):611–617. doi: 10.1378/chest.97.3.611. [DOI] [PubMed] [Google Scholar]
- Bayer A. S., Norman D., Kim K. S. Efficacy of amikacin and ceftazidime in experimental aortic valve endocarditis due to Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1985 Dec;28(6):781–785. doi: 10.1128/aac.28.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craig W. A. Post-antibiotic effects in experimental infection models: relationship to in-vitro phenomena and to treatment of infections in man. J Antimicrob Chemother. 1993 May;31 (Suppl 500):149–158. doi: 10.1093/jac/31.suppl_d.149. [DOI] [PubMed] [Google Scholar]
- Cremieux A. C., Carbon C. Pharmacokinetic and pharmacodynamic requirements for antibiotic therapy of experimental endocarditis. Antimicrob Agents Chemother. 1992 Oct;36(10):2069–2074. doi: 10.1128/aac.36.10.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cremieux A. C., Maziere B., Vallois J. M., Ottaviani M., Azancot A., Raffoul H., Bouvet A., Pocidalo J. J., Carbon C. Evaluation of antibiotic diffusion into cardiac vegetations by quantitative autoradiography. J Infect Dis. 1989 May;159(5):938–944. doi: 10.1093/infdis/159.5.938. [DOI] [PubMed] [Google Scholar]
- Daikos G. L., Jackson G. G., Lolans V. T., Livermore D. M. Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis. 1990 Aug;162(2):414–420. doi: 10.1093/infdis/162.2.414. [DOI] [PubMed] [Google Scholar]
- Daikos G. L., Lolans V. T., Jackson G. G. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother. 1991 Jan;35(1):117–123. doi: 10.1128/aac.35.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fantin B., Carbon C. In vivo antibiotic synergism: contribution of animal models. Antimicrob Agents Chemother. 1992 May;36(5):907–912. doi: 10.1128/aac.36.5.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giamarellou H., Yiallouros K., Petrikkos G., Moschovakis E., Vavouraki E., Voutsinas D., Sfikakis P. Comparative kinetics and efficacy of amikacin administered once or twice daily in the treatment of systemic gram-negative infections. J Antimicrob Chemother. 1991 May;27 (Suppl 100):73–79. doi: 10.1093/jac/27.suppl_c.73. [DOI] [PubMed] [Google Scholar]
- Jackson G. G., Lolans V. T., Daikos G. L. The inductive role of ionic binding in the bactericidal and postexposure effects of aminoglycoside antibiotics with implications for dosing. J Infect Dis. 1990 Aug;162(2):408–413. doi: 10.1093/infdis/162.2.408. [DOI] [PubMed] [Google Scholar]
- Jimenez-Lucho V. E., Saravolatz L. D., Medeiros A. A., Pohlod D. Failure of therapy in pseudomonas endocarditis: selection of resistant mutants. J Infect Dis. 1986 Jul;154(1):64–68. doi: 10.1093/infdis/154.1.64. [DOI] [PubMed] [Google Scholar]
- Karlowsky J. A., Saunders M. H., Harding G. A., Hoban D. J., Zhanel G. G. In vitro characterization of aminoglycoside adaptive resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996 Jun;40(6):1387–1393. doi: 10.1128/aac.40.6.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komshian S. V., Tablan O. C., Palutke W., Reyes M. P. Characteristics of left-sided endocarditis due to Pseudomonas aeruginosa in the Detroit Medical Center. Rev Infect Dis. 1990 Jul-Aug;12(4):693–702. doi: 10.1093/clinids/12.4.693. [DOI] [PubMed] [Google Scholar]
- MacArthur R. D., Lolans V., Zar F. A., Jackson G. G. Biphasic, concentration-dependent and rate-limited, concentration-independent bacterial killing by an aminoglycoside antibiotic. J Infect Dis. 1984 Nov;150(5):778–779. doi: 10.1093/infdis/150.5.778. [DOI] [PubMed] [Google Scholar]
- Maller R., Isaksson B., Nilsson L., Sörén L. A study of amikacin given once versus twice daily in serious infections. J Antimicrob Chemother. 1988 Jul;22(1):75–79. doi: 10.1093/jac/22.1.75. [DOI] [PubMed] [Google Scholar]
- Moore R. D., Lietman P. S., Smith C. R. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987 Jan;155(1):93–99. doi: 10.1093/infdis/155.1.93. [DOI] [PubMed] [Google Scholar]
- Nicolau D. P., Freeman C. D., Belliveau P. P., Nightingale C. H., Ross J. W., Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995 Mar;39(3):650–655. doi: 10.1128/AAC.39.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potel G., Caillon J., Le Gallou F., Bugnon D., Le Conte P., Raza J., Lepage J. Y., Baron D., Drugeon H. Identification of factors affecting in vivo aminoglycoside activity in an experimental model of gram-negative endocarditis. Antimicrob Agents Chemother. 1992 Apr;36(4):744–750. doi: 10.1128/aac.36.4.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powell S. H., Thompson W. L., Luthe M. A., Stern R. C., Grossniklaus D. A., Bloxham D. D., Groden D. L., Jacobs M. R., DiScenna A. O., Cash H. A. Once-daily vs. continuous aminoglycoside dosing: efficacy and toxicity in animal and clinical studies of gentamicin, netilmicin, and tobramycin. J Infect Dis. 1983 May;147(5):918–932. doi: 10.1093/infdis/147.5.918. [DOI] [PubMed] [Google Scholar]
- Rahal J. J., Jr, Hyams P. J., Simberkoff M. S., Rubinstein E. Combined intrathecal and intramuscular gentamicin for gram-negative meningitis. Pharmacologic study of 21 patients. N Engl J Med. 1974 Jun 20;290(25):1394–1398. doi: 10.1056/NEJM197406202902502. [DOI] [PubMed] [Google Scholar]
- Reyes M. P., Lerner A. M. Current problems in the treatment of infective endocarditis due to Pseudomonas aeruginosa. Rev Infect Dis. 1983 Mar-Apr;5(2):314–321. doi: 10.1093/clinids/5.2.314. [DOI] [PubMed] [Google Scholar]
- Sturm A. W. Netilmicin in the treatment of gram-negative bacteremia: single daily versus multiple daily dosage. J Infect Dis. 1989 May;159(5):931–937. doi: 10.1093/infdis/159.5.931. [DOI] [PubMed] [Google Scholar]
- Van der Auwera P., Meunier F., Ibrahim S., Kaufman L., Derde M. P., Tulkens P. M. Pharmacodynamic parameters and toxicity of netilmicin (6 milligrams/kilogram/day) given once daily or in three divided doses to cancer patients with urinary tract infection. Antimicrob Agents Chemother. 1991 Apr;35(4):640–647. doi: 10.1128/aac.35.4.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Y. Q., Caillon J., Drugeon H., Potel G., Baron D. Influence of pH on adaptive resistance of Pseudomonas aeruginosa to aminoglycosides and their postantibiotic effects. Antimicrob Agents Chemother. 1996 Jan;40(1):35–39. doi: 10.1128/aac.40.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Y. Q., Caillon J., Drugeon H., Potel G., Baron D. The effect of rifampicin on adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. J Antimicrob Chemother. 1996 May;37(5):993–998. doi: 10.1093/jac/37.5.993. [DOI] [PubMed] [Google Scholar]