Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Jun;108(6):553–557. doi: 10.1289/ehp.00108553

Comparison of chemical-activated luciferase gene expression bioassay and gas chromatography for PCB determination in human serum and follicular fluid.

A Pauwels 1, P H Cenijn 1, P J Schepens 1, A Brouwer 1
PMCID: PMC1638137  PMID: 10856030

Abstract

We assessed exposure to dioxin-like compounds using chemical and bioassay analysis in different matrices in a female population. A total of 106 serum and 9 follicular fluid samples were collected from infertile women attending Centers for Reproductive Medicine in Belgium from 1996 to 1998. Major polychlorinated biphenyl (PCB) congeners were quantified by chemical analysis using gas chromatography with electron-capture detection, and the chemical-activated luciferase gene expression (CALUX) bioassay was used to determine the total dioxin-like toxic equivalence (TEQ) of mixtures of polyhalogenated aromatic hydrocarbons present in body fluids, such as serum and follicular fluid. To the best of our knowledge, this is the first investigation to determine TEQ values by the CALUX bioassay in follicular fluid. The TEQ levels in both matrices are well correlated (r = 0.83, p = 0.02). As the chemical and bioassay analysis executed in this study do not cover the same span of polyhalogenated aromatic hydrocarbons, we did not expect totally correlated results. Moreover, the sample workup and quantification of the analytes differed completely. Nonetheless, the TEQ values in human extracts correlated well with the sum of four major PCB congeners chemically determined in both serum and follicular fluid. These results indicate that the CALUX bioassay may serve as a simple, relatively inexpensive prescreening tool for exposure assessment in epidemiologic surveys.

Full text

PDF
553

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts J. M., Denison M. S., Cox M. A., Schalk M. A., Garrison P. M., Tullis K., de Haan L. H., Brouwer A. Species-specific antagonism of Ah receptor action by 2,2',5,5'-tetrachloro- and 2,2',3,3'4,4'-hexachlorobiphenyl. Eur J Pharmacol. 1995 Dec 7;293(4):463–474. doi: 10.1016/0926-6917(95)90067-5. [DOI] [PubMed] [Google Scholar]
  2. Bovee T. F., Hoogenboom L. A., Hamers A. R., Traag W. A., Zuidema T., Aarts J. M., Brouwer A., Kuiper H. A. Validation and use of the CALUX-bioassay for the determination of dioxins and PCBs in bovine milk. Food Addit Contam. 1998 Nov-Dec;15(8):863–875. doi: 10.1080/02652039809374723. [DOI] [PubMed] [Google Scholar]
  3. Brouwer A., Ahlborg U. G., Van den Berg M., Birnbaum L. S., Boersma E. R., Bosveld B., Denison M. S., Gray L. E., Hagmar L., Holene E. Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants. Eur J Pharmacol. 1995 May 26;293(1):1–40. doi: 10.1016/0926-6917(95)90015-2. [DOI] [PubMed] [Google Scholar]
  4. Garrison P. M., Tullis K., Aarts J. M., Brouwer A., Giesy J. P., Denison M. S. Species-specific recombinant cell lines as bioassay systems for the detection of 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals. Fundam Appl Toxicol. 1996 Apr;30(2):194–203. doi: 10.1006/faat.1996.0056. [DOI] [PubMed] [Google Scholar]
  5. Murk A. J., Legler J., Denison M. S., Giesy J. P., van de Guchte C., Brouwer A. Chemical-activated luciferase gene expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol. 1996 Sep;33(1):149–160. doi: 10.1006/faat.1996.0152. [DOI] [PubMed] [Google Scholar]
  6. Patterson D. G., Jr, Hampton L., Lapeza C. R., Jr, Belser W. T., Green V., Alexander L., Needham L. L. High-resolution gas chromatographic/high-resolution mass spectrometric analysis of human serum on a whole-weight and lipid basis for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anal Chem. 1987 Aug 1;59(15):2000–2005. doi: 10.1021/ac00142a023. [DOI] [PubMed] [Google Scholar]
  7. Pauwels A., Covaci A., Delbeke L., Punjabi U., Schepens P. J. The relation between levels of selected PCB congeners in human serum and follicular fluid. Chemosphere. 1999 Dec;39(14):2433–2441. doi: 10.1016/s0045-6535(99)00170-8. [DOI] [PubMed] [Google Scholar]
  8. Pauwels A., Wells D. A., Covaci A., Schepens P. J. Improved sample preparation method for selected persistent organochlorine pollutants in human serum using solid-phase disk extraction with gas chromatographic analysis. J Chromatogr B Biomed Sci Appl. 1999 Feb 19;723(1-2):117–125. doi: 10.1016/s0378-4347(98)00493-9. [DOI] [PubMed] [Google Scholar]
  9. Safe S. H. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol. 1994;24(2):87–149. doi: 10.3109/10408449409049308. [DOI] [PubMed] [Google Scholar]
  10. Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol. 1990;21(1):51–88. doi: 10.3109/10408449009089873. [DOI] [PubMed] [Google Scholar]
  11. Sauer P. J., Huisman M., Koopman-Esseboom C., Morse D. C., Smits-van Prooije A. E., van de Berg K. J., Tuinstra L. G., van der Paauw C. G., Boersma E. R., Weisglas-Kuperus N. Effects of polychlorinated biphenyls (PCBs) and dioxins on growth and development. Hum Exp Toxicol. 1994 Dec;13(12):900–906. doi: 10.1177/096032719401301213. [DOI] [PubMed] [Google Scholar]
  12. Schecter A., Stanley J., Boggess K., Masuda Y., Mes J., Wolff M., Fürst P., Fürst C., Wilson-Yang K., Chisholm B. Polychlorinated biphenyl levels in the tissues of exposed and nonexposed humans. Environ Health Perspect. 1994 Jan;102 (Suppl 1):149–158. doi: 10.1289/ehp.94102s1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schlebusch H., Wagner U., van der Ven H., al-Hasani S., Diedrich K., Krebs D. Polychlorinated biphenyls: the occurrence of the main congeners in follicular and sperm fluids. J Clin Chem Clin Biochem. 1989 Sep;27(9):663–667. doi: 10.1515/cclm.1989.27.9.663. [DOI] [PubMed] [Google Scholar]
  14. Schmid S., Pavic N., Tempini A., Linde H. H. Polychlorierte Biphenyle als Sterilitätsursache bei der Frau? Gynakol Geburtshilfliche Rundsch. 1993;33(2):103–106. doi: 10.1159/000272077. [DOI] [PubMed] [Google Scholar]
  15. Smits-van Prooije A. E., Waalkens-Berendsen D. H., Morse D. C., Koopman-Esseboom C., Huisman M., Sauer P. J., Boersma E. R., Lammers J. H., van den Berg K. J., van der Paauw G. C. The effects on mammals of pre- and postnatal environmental exposure to PCBS. The Dutch Collaborative PCB/Dioxin Study. Arch Toxicol Suppl. 1996;18:97–102. doi: 10.1007/978-3-642-61105-6_11. [DOI] [PubMed] [Google Scholar]
  16. Van den Berg M., Birnbaum L., Bosveld A. T., Brunström B., Cook P., Feeley M., Giesy J. P., Hanberg A., Hasegawa R., Kennedy S. W. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect. 1998 Dec;106(12):775–792. doi: 10.1289/ehp.98106775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weisglas-Kuperus N., Sas T. C., Koopman-Esseboom C., van der Zwan C. W., De Ridder M. A., Beishuizen A., Hooijkaas H., Sauer P. J. Immunologic effects of background prenatal and postnatal exposure to dioxins and polychlorinated biphenyls in Dutch infants. Pediatr Res. 1995 Sep;38(3):404–410. doi: 10.1203/00006450-199509000-00022. [DOI] [PubMed] [Google Scholar]
  18. van der Ven K., van der Ven H., Thibold A., Bauer O., Kaisi M., Mbura J., Mgaya H. N., Weber N., Diedrich K., Krebs D. Chlorinated hydrocarbon content of fetal and maternal body tissues and fluids in full term pregnant women: a comparison of Germany versus Tanzania. Hum Reprod. 1992 Jun;7 (Suppl 1):95–100. doi: 10.1093/humrep/7.suppl_1.95. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES