Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Apr;41(4):866–868. doi: 10.1128/aac.41.4.866

Sensitivity of Aeromonas hydrophila carbapenemase to delta3-cephems: comparative study with other metallo-beta-lactamases.

A Felici 1, M Perilli 1, N Franceschini 1, G M Rossolini 1, M Galleni 1, J M Frere 1, A Oratore 1, G Amicosante 1
PMCID: PMC163814  PMID: 9087509

Abstract

Ceftriaxone and ceftriaxone S-oxide behaved as inactivators against the metallo-beta-lactamase of Aeromonas hydrophila AE036 and as substrates for the zinc beta-lactamase produced by Bacillus cereus (569/H/9) and Stenotrophomonas maltophilia ULA 511. Moreover, RO 09-1428, a catechol-cephalosporin, was not recognized by the A. hydrophila enzyme. Panipenem, cephalosporin C, cephalosporin C-gamma-lactone, and loracarbef were substrates for the three studied beta-lactamases.

Full Text

The Full Text of this article is available as a PDF (209.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321–331. doi: 10.1098/rstb.1980.0049. [DOI] [PubMed] [Google Scholar]
  2. Bush K., Macalintal C., Rasmussen B. A., Lee V. J., Yang Y. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob Agents Chemother. 1993 Apr;37(4):851–858. doi: 10.1128/aac.37.4.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carfi A., Pares S., Duée E., Galleni M., Duez C., Frère J. M., Dideberg O. The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 1995 Oct 16;14(20):4914–4921. doi: 10.1002/j.1460-2075.1995.tb00174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Concha N. O., Rasmussen B. A., Bush K., Herzberg O. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure. 1996 Jul 15;4(7):823–836. doi: 10.1016/s0969-2126(96)00089-5. [DOI] [PubMed] [Google Scholar]
  5. De Meester F., Joris B., Reckinger G., Bellefroid-Bourguignon C., Frère J. M., Waley S. G. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem Pharmacol. 1987 Jul 15;36(14):2393–2403. doi: 10.1016/0006-2952(87)90609-5. [DOI] [PubMed] [Google Scholar]
  6. Felici A., Amicosante G. Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases. Antimicrob Agents Chemother. 1995 Jan;39(1):192–199. doi: 10.1128/aac.39.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Felici A., Amicosante G., Oratore A., Strom R., Ledent P., Joris B., Fanuel L., Frère J. M. An overview of the kinetic parameters of class B beta-lactamases. Biochem J. 1993 Apr 1;291(Pt 1):151–155. doi: 10.1042/bj2910151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keynan S., Hooper N. M., Felici A., Amicosante G., Turner A. J. The renal membrane dipeptidase (dehydropeptidase I) inhibitor, cilastatin, inhibits the bacterial metallo-beta-lactamase enzyme CphA. Antimicrob Agents Chemother. 1995 Jul;39(7):1629–1631. doi: 10.1128/aac.39.7.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Payne D. J. Metallo-beta-lactamases--a new therapeutic challenge. J Med Microbiol. 1993 Aug;39(2):93–99. doi: 10.1099/00222615-39-2-93. [DOI] [PubMed] [Google Scholar]
  10. Varetto L., Frère J. M., Ghuysen J. M. The importance of the negative charge of beta-lactam compounds for the inactivation of the active-site serine DD-peptidase of Streptomyces R61. FEBS Lett. 1987 Dec 10;225(1-2):218–222. doi: 10.1016/0014-5793(87)81161-4. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES