Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Jun;108(6):559–561. doi: 10.1289/ehp.00108559

Genotoxic effects of alpha-endosulfan and beta-endosulfan on human HepG2 cells.

Y Lu 1, K Morimoto 1, T Takeshita 1, T Takeuchi 1, T Saito 1
PMCID: PMC1638147  PMID: 10856031

Abstract

alpha-Endosulfan and ss-endosulfan are isomers of endosulfan, a pesticide used worldwide. In this study, we examined the genotoxicity of [alpha]- and ss-endosulfan in vitro with a HepG2 cell line. We used sister chromatid exchanges (SCE), micronuclei (MN), and DNA strand breaks as detected by single-cell gel electrophoresis (SCG) assays as biomarkers to judge the genotoxicity of [alpha]- and ss-endosulfan at concentrations from 1 times 10(-12) M to 1 times 10(-3) M. After treating HepG2 cells for 48 hr with ss-endosulfan, SCE showed a significant increase at concentrations from 1 times 10(-7) M to 1 times 10(-5) M, and MN showed a significant increase at concentrations from 5 times 10(-5) M to 1 times 10(-3) M. [alpha]-Endosulfan failed to show significant effects in both the SCE and MN assays. After treating HepG2 cells with [alpha]- or ss-endosulfan for 1 hr, DNA strand breaks were significantly induced by [alpha]-endosulfan at concentrations from 2 times 10(-4) M to 1 times 10(-3) M, and by ss-endosulfan at 1 times 10(-3) M. The results of this study suggest that both [alpha]- and ss-endosulfan are genotoxic to HepG2 cells and that the genotoxicity of ss-endosulfan seems stronger than that of [alpha]-endosulfan.

Full text

PDF
559

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boereboom F. T., van Dijk A., van Zoonen P., Meulenbelt J. Nonaccidental endosulfan intoxication: a case report with toxicokinetic calculations and tissue concentrations. J Toxicol Clin Toxicol. 1998;36(4):345–352. doi: 10.3109/15563659809028031. [DOI] [PubMed] [Google Scholar]
  2. Chaudhuri K., Selvaraj S., Pal A. K. Studies on the genotoxicity of endosulfan in bacterial systems. Mutat Res. 1999 Feb 2;439(1):63–67. doi: 10.1016/s1383-5718(98)00174-0. [DOI] [PubMed] [Google Scholar]
  3. Darroudi F., Natarajan A. T. Metabolic activation of chemicals to mutagenic carcinogens by human hepatoma microsomal extracts in Chinese hamster ovary cells (in vitro). Mutagenesis. 1993 Jan;8(1):11–15. doi: 10.1093/mutage/8.1.11. [DOI] [PubMed] [Google Scholar]
  4. Dzwonkowska A., Hübner H. Induction of chromosomal aberrations in the Syrian hamster by insecticides tested in vivo. Arch Toxicol. 1986 Feb;58(3):152–156. doi: 10.1007/BF00340974. [DOI] [PubMed] [Google Scholar]
  5. Edmunds S. E., Stubbs A. P., Santos A. A., Wilkinson M. L. Estrogen and androgen regulation of sex hormone binding globulin secretion by a human liver cell line. J Steroid Biochem Mol Biol. 1990 Dec 10;37(5):733–739. doi: 10.1016/0960-0760(90)90358-r. [DOI] [PubMed] [Google Scholar]
  6. Forsberg J. G. Estrogen effects on chromosome number and sister chromatid exchanges in uterine epithelial cells and kidney cells from neonatal mice. Teratog Carcinog Mutagen. 1991;11(3):135–146. doi: 10.1002/tcm.1770110303. [DOI] [PubMed] [Google Scholar]
  7. Khan P. K., Sinha S. P. Antimutagenic efficacy of higher doses of vitamin C. Mutat Res. 1993 Jan;298(3):157–161. doi: 10.1016/0165-1218(93)90036-d. [DOI] [PubMed] [Google Scholar]
  8. Khan P. K., Sinha S. P. Impact of higher doses of vitamin C in modulating pesticide genotoxicity. Teratog Carcinog Mutagen. 1994;14(4):175–181. doi: 10.1002/tcm.1770140404. [DOI] [PubMed] [Google Scholar]
  9. Kiran R., Varma M. N. Biochemical studies on endosulfan toxicity in different age groups of rats. Toxicol Lett. 1988 Dec;44(3):247–252. doi: 10.1016/0378-4274(88)90163-4. [DOI] [PubMed] [Google Scholar]
  10. Knasmüller S., Parzefall W., Sanyal R., Ecker S., Schwab C., Uhl M., Mersch-Sundermann V., Williamson G., Hietsch G., Langer T. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res. 1998 Jun 18;402(1-2):185–202. doi: 10.1016/s0027-5107(97)00297-2. [DOI] [PubMed] [Google Scholar]
  11. Lee I. R., Dawson S. A., Wetherall J. D., Hahnel R. Sex hormone-binding globulin secretion by human hepatocarcinoma cells is increased by both estrogens and androgens. J Clin Endocrinol Metab. 1987 Apr;64(4):825–831. doi: 10.1210/jcem-64-4-825. [DOI] [PubMed] [Google Scholar]
  12. Lundgren K., Randerath K., Everson R. B. Role of metabolism and DNA adduct formation in the induction of sister chromatid exchanges in human lymphocytes by diethylstilbestrol. Cancer Res. 1988 Jan 15;48(2):335–338. [PubMed] [Google Scholar]
  13. Naqvi S. M., Newton D. J. Bioaccumulation of endosulfan (Thiodan insecticide) in the tissues of Louisiana crayfish, Procambarus clarkii. J Environ Sci Health B. 1990 Aug;25(4):511–526. doi: 10.1080/03601239009372703. [DOI] [PubMed] [Google Scholar]
  14. Pfeiffer E., Rosenberg B., Deuschel S., Metzler M. Interference with microtubules and induction of micronuclei in vitro by various bisphenols. Mutat Res. 1997 Apr 24;390(1-2):21–31. doi: 10.1016/s0165-1218(96)00161-9. [DOI] [PubMed] [Google Scholar]
  15. Rueff J., Chiapella C., Chipman J. K., Darroudi F., Silva I. D., Duverger-van Bogaert M., Fonti E., Glatt H. R., Isern P., Laires A. Development and validation of alternative metabolic systems for mutagenicity testing in short-term assays. Mutat Res. 1996 Jun 12;353(1-2):151–176. doi: 10.1016/0027-5107(95)00246-4. [DOI] [PubMed] [Google Scholar]
  16. Rupa D. S., Reddy P. P., Sreemannarayana K., Reddi O. S. Frequency of sister chromatid exchange in peripheral lymphocytes of male pesticide applicators. Environ Mol Mutagen. 1991;18(2):136–138. doi: 10.1002/em.2850180209. [DOI] [PubMed] [Google Scholar]
  17. Simonich S. L., Hites R. A. Global distribution of persistent organochlorine compounds. Science. 1995 Sep 29;269(5232):1851–1854. doi: 10.1126/science.7569923. [DOI] [PubMed] [Google Scholar]
  18. Singh N. P., McCoy M. T., Tice R. R., Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0. [DOI] [PubMed] [Google Scholar]
  19. Sobti R. C., Krishan A., Davies J. Cytokinetic and cytogenetic effect of agricultural chemicals on human lymphoid cells in vitro. II. Organochlorine pesticides. Arch Toxicol. 1983 Mar;52(3):221–231. doi: 10.1007/BF00333901. [DOI] [PubMed] [Google Scholar]
  20. Soto A. M., Chung K. L., Sonnenschein C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ Health Perspect. 1994 Apr;102(4):380–383. doi: 10.1289/ehp.94102380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tam S. P., Archer T. K., Deeley R. G. Biphasic effects of estrogen on apolipoprotein synthesis in human hepatoma cells: mechanism of antagonism by testosterone. Proc Natl Acad Sci U S A. 1986 May;83(10):3111–3115. doi: 10.1073/pnas.83.10.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vonier P. M., Crain D. A., McLachlan J. A., Guillette L. J., Jr, Arnold S. F. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect. 1996 Dec;104(12):1318–1322. doi: 10.1289/ehp.961041318. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES