Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):898–905. doi: 10.1128/aac.41.5.898

Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects.

A Hsu 1, G R Granneman 1, G Witt 1, C Locke 1, J Denissen 1, A Molla 1, J Valdes 1, J Smith 1, K Erdman 1, N Lyons 1, P Niu 1, J P Decourt 1, J B Fourtillan 1, J Girault 1, J M Leonard 1
PMCID: PMC163822  PMID: 9145841

Abstract

The multiple-dose pharmacokinetics of ritonavir were investigated in four groups of human immunodeficiency virus-positive male subjects (with 16 subjects per group) under nonfasting conditions; a 3:1 ritonavir:placebo ratio was used. Ritonavir was given at 200 (group I), 300 (group II), 400 (group III), or 500 (group IV) mg every 12 h for 2 weeks. The multiple-dose pharmacokinetics of ritonavir were moderately dose dependent, with the clearance for group IV (6.8 +/- 2.7 liters/h) being an average of 32% lower than that for group I (10.0 +/- 3.2 liters/h). First-pass metabolism should be minimal for ritonavir. The functional half-life, estimated from peak and trough concentrations, were similar among the dosage groups, averaging 3.1 and 5.7 h after the morning and evening doses, respectively. The area under the concentration-time curve at 24 h (AUC24) and apparent terminal-phase elimination rate constant remained relatively time invariant, but predose concentrations decreased 30 to 70% over time. Concentration-dependent autoinduction is the most likely mechanism for the time-dependent pharmacokinetics. The Km and initial maximum rate of metabolism (Vmax) values estimated from population pharmacokinetic modeling (nonlinear mixed-effects models) were 3.43 microg/ml and 46.9 mg/h, respectively. The group IV Vmax increased to 68 mg/h after 2 weeks. The maximum concentration of ritonavir in serum (Cmax) and AUC after the evening doses were an average of 30 to 40% lower than the values after the morning doses, while the concentration at 12 h was an average of 32% lower than the predose concentration, probably due to protracted absorption. Less than 2% of the dose was eliminated unchanged in the urine. Triglyceride levels increased from the levels at the baseline, and the levels were correlated with baseline triglyceride levels and AUC, Cmax, or predose concentrations.

Full Text

The Full Text of this article is available as a PDF (309.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry M., Feely J. Enzyme induction and inhibition. Pharmacol Ther. 1990;48(1):71–94. doi: 10.1016/0163-7258(90)90019-x. [DOI] [PubMed] [Google Scholar]
  2. Craig J. C., Duncan I. B., Hockley D., Grief C., Roberts N. A., Mills J. S. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antiviral Res. 1991 Dec;16(4):295–305. doi: 10.1016/0166-3542(91)90045-s. [DOI] [PubMed] [Google Scholar]
  3. Danner S. A., Carr A., Leonard J. M., Lehman L. M., Gudiol F., Gonzales J., Raventos A., Rubio R., Bouza E., Pintado V. A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. European-Australian Collaborative Ritonavir Study Group. N Engl J Med. 1995 Dec 7;333(23):1528–1533. doi: 10.1056/NEJM199512073332303. [DOI] [PubMed] [Google Scholar]
  4. Goldberg D. M., Roomi M. W., Yu A., Roncari D. A. Effects of phenobarbital upon triacylglycerol metabolism in the rabbit. Biochem J. 1980 Oct 15;192(1):165–175. doi: 10.1042/bj1920165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  6. Kempf D. J., Marsh K. C., Denissen J. F., McDonald E., Vasavanonda S., Flentge C. A., Green B. E., Fino L., Park C. H., Kong X. P. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2484–2488. doi: 10.1073/pnas.92.7.2484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kempf D. J., Norbeck D. W., Codacovi L., Wang X. C., Kohlbrenner W. E., Wideburg N. E., Paul D. A., Knigge M. F., Vasavanonda S., Craig-Kennard A. Structure-based, C2 symmetric inhibitors of HIV protease. J Med Chem. 1990 Oct;33(10):2687–2689. doi: 10.1021/jm00172a002. [DOI] [PubMed] [Google Scholar]
  8. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kumar G. N., Rodrigues A. D., Buko A. M., Denissen J. F. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther. 1996 Apr;277(1):423–431. [PubMed] [Google Scholar]
  10. Lai A. A., Levy R. H., Cutler R. E. Time-course of interaction between carbamazepine and clonazepam in normal man. Clin Pharmacol Ther. 1978 Sep;24(3):316–323. doi: 10.1002/cpt1978243316. [DOI] [PubMed] [Google Scholar]
  11. Levy R. H., Lai A. A., Dumain M. S. Time-dependent kinetics IV: Pharmacokinetic theory of enzyme induction. J Pharm Sci. 1979 Mar;68(3):398–399. doi: 10.1002/jps.2600680346. [DOI] [PubMed] [Google Scholar]
  12. Markowitz M., Saag M., Powderly W. G., Hurley A. M., Hsu A., Valdes J. M., Henry D., Sattler F., La Marca A., Leonard J. M. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N Engl J Med. 1995 Dec 7;333(23):1534–1539. doi: 10.1056/NEJM199512073332204. [DOI] [PubMed] [Google Scholar]
  13. Martin J. V., Hague R. V., Martin P. J., Cullen D. R., Goldberg D. M. The association between serum triglycerides and gamma glutamyl transpeptidase activity in diabetes mellitus. Clin Biochem. 1976 Aug;9(4):208–211. doi: 10.1016/s0009-9120(76)80059-8. [DOI] [PubMed] [Google Scholar]
  14. Martin J. V., Martin P. J., Goldberg D. M. Enzyme inducation as a possible cause of increased serum-trigylcerides after oral contraceptives. Lancet. 1976 May 22;1(7969):1107–1108. doi: 10.1016/s0140-6736(76)90067-2. [DOI] [PubMed] [Google Scholar]
  15. Ohnhaus E. E., Breckenridge A. M., Park B. K. Urinary excretion of 6 beta-hydroxycortisol and the time course measurement of enzyme induction in man. Eur J Clin Pharmacol. 1989;36(1):39–46. doi: 10.1007/BF00561021. [DOI] [PubMed] [Google Scholar]
  16. Okey A. B. Enzyme induction in the cytochrome P-450 system. Pharmacol Ther. 1990;45(2):241–298. doi: 10.1016/0163-7258(90)90030-6. [DOI] [PubMed] [Google Scholar]
  17. Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar 15;271(5255):1582–1586. doi: 10.1126/science.271.5255.1582. [DOI] [PubMed] [Google Scholar]
  18. Pichard L., Fabre I., Fabre G., Domergue J., Saint Aubert B., Mourad G., Maurel P. Cyclosporin A drug interactions. Screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos. 1990 Sep-Oct;18(5):595–606. [PubMed] [Google Scholar]
  19. Sheiner L. B., Beal S. L. Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm. 1980 Dec;8(6):553–571. doi: 10.1007/BF01060053. [DOI] [PubMed] [Google Scholar]
  20. Vacca J. P., Dorsey B. D., Schleif W. A., Levin R. B., McDaniel S. L., Darke P. L., Zugay J., Quintero J. C., Blahy O. M., Roth E. L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4096–4100. doi: 10.1073/pnas.91.9.4096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet. 1992 Jan;22(1):47–65. doi: 10.2165/00003088-199222010-00005. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES