Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):906–913. doi: 10.1128/aac.41.5.906

Increased expression of fibronectin-binding proteins by fluoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofloxacin.

C Bisognano 1, P E Vaudaux 1, D P Lew 1, E Y Ng 1, D C Hooper 1
PMCID: PMC163823  PMID: 9145842

Abstract

Bacterial adhesion, which plays an important role in Staphylococcus aureus colonization and infection, may be altered by the presence of antibiotics or/and antibiotic resistance determinants. This study evaluated the effect of fluoroquinolone resistance determinants on S. aureus adhesion to solid-phase fibronectin, which is specifically mediated by two surface-located fibronectin-binding proteins. Five isogenic mutants, derived from strain NCTC 8325 and expressing various levels of quinolone resistance, were tested in an in vitro bacterial adhesion assay with polymethylmethacrylate coverslips coated with increasing amounts of fibronectin. These strains contained single or combined mutations in the three major loci contributing to fluoroquinolone resistance, namely, grlA, gyrA, and flqB, which code for altered topoisomerase IV, DNA gyrase, and increased norA-mediated efflux of fluoroquinolones, respectively. Adhesion characteristics of the different quinolone-resistant mutants grown in the absence of fluoroquinolone showed only minor differences from those of parental strains. However, more important changes in adhesion were exhibited by mutants highly resistant to quinolones following their exponential growth in the presence of one-quarter MIC of ciprofloxacin. Increased bacterial adhesion of the highly quinolone-resistant mutants, which contained combined mutations in grlA and gyrA, was associated with and explained by the overexpression of their fibronectin-binding proteins as assessed by Western ligand affinity blotting. These findings contradict the notion that subinhibitory concentrations of antibiotics generally decrease the expression of virulence factors by S. aureus. Perhaps the increased adhesion of S. aureus strains highly resistant to fluoroquinolones contributes in part to that emergence in clinical settings.

Full Text

The Full Text of this article is available as a PDF (286.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyce J. M., Opal S. M., Potter-Bynoe G., Medeiros A. A. Spread of methicillin-resistant Staphylococcus aureus in a hospital after exposure to a health care worker with chronic sinusitis. Clin Infect Dis. 1993 Sep;17(3):496–504. doi: 10.1093/clinids/17.3.496. [DOI] [PubMed] [Google Scholar]
  2. Braga P. C. Effects of subinhibitory concentrations of seven macrolides and four fluoroquinolones on adhesion of Staphylococcus aureus to human mucosal cells. Chemotherapy. 1994 Sep-Oct;40(5):304–310. doi: 10.1159/000239211. [DOI] [PubMed] [Google Scholar]
  3. Butcher W. G., Close J., Krajewska-Pietrasik D., Switalski L. M. Antibiotics alter interactions of Staphylococcus aureus with collagenous substrata. Chemotherapy. 1994 Mar-Apr;40(2):114–123. doi: 10.1159/000239182. [DOI] [PubMed] [Google Scholar]
  4. Cheung A. L., Eberhardt K. J., Chung E., Yeaman M. R., Sullam P. M., Ramos M., Bayer A. S. Diminished virulence of a sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J Clin Invest. 1994 Nov;94(5):1815–1822. doi: 10.1172/JCI117530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Desnottes J. F., Diallo N., Loubeyre C., Moreau N. Effect of pefloxacin on microorganism: host cell interaction. J Antimicrob Chemother. 1990 Oct;26 (Suppl B):17–26. doi: 10.1093/jac/26.suppl_b.17. [DOI] [PubMed] [Google Scholar]
  6. Ferrero L., Cameron B., Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Jul;39(7):1554–1558. doi: 10.1128/aac.39.7.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferrero L., Cameron B., Manse B., Lagneaux D., Crouzet J., Famechon A., Blanche F. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol. 1994 Aug;13(4):641–653. doi: 10.1111/j.1365-2958.1994.tb00458.x. [DOI] [PubMed] [Google Scholar]
  8. Flock J. I., Fröman G., Jönsson K., Guss B., Signäs C., Nilsson B., Raucci G., Hök M., Wadström T., Lindberg M. Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus. EMBO J. 1987 Aug;6(8):2351–2357. doi: 10.1002/j.1460-2075.1987.tb02511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster T. J., McDevitt D. Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence. FEMS Microbiol Lett. 1994 May 15;118(3):199–205. doi: 10.1111/j.1574-6968.1994.tb06828.x. [DOI] [PubMed] [Google Scholar]
  10. Greene C., McDevitt D., Francois P., Vaudaux P. E., Lew D. P., Foster T. J. Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Mol Microbiol. 1995 Sep;17(6):1143–1152. doi: 10.1111/j.1365-2958.1995.mmi_17061143.x. [DOI] [PubMed] [Google Scholar]
  11. Greene C., Vaudaux P. E., Francois P., Proctor R. A., McDevitt D., Foster T. J. A low-fibronectin-binding mutant of Staphylococcus aureus 879R4S has Tn918 inserted into its single fnb gene. Microbiology. 1996 Aug;142(Pt 8):2153–2160. doi: 10.1099/13500872-142-8-2153. [DOI] [PubMed] [Google Scholar]
  12. Hart M. E., Smeltzer M. S., Iandolo J. J. The extracellular protein regulator (xpr) affects exoprotein and agr mRNA levels in Staphylococcus aureus. J Bacteriol. 1993 Dec;175(24):7875–7879. doi: 10.1128/jb.175.24.7875-7879.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herrmann M., Lai Q. J., Albrecht R. M., Mosher D. F., Proctor R. A. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis. 1993 Feb;167(2):312–322. doi: 10.1093/infdis/167.2.312. [DOI] [PubMed] [Google Scholar]
  14. Herrmann M., Suchard S. J., Boxer L. A., Waldvogel F. A., Lew P. D. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun. 1991 Jan;59(1):279–288. doi: 10.1128/iai.59.1.279-288.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herrmann M., Vaudaux P. E., Pittet D., Auckenthaler R., Lew P. D., Schumacher-Perdreau F., Peters G., Waldvogel F. A. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis. 1988 Oct;158(4):693–701. doi: 10.1093/infdis/158.4.693. [DOI] [PubMed] [Google Scholar]
  16. Ito H., Yoshida H., Bogaki-Shonai M., Niga T., Hattori H., Nakamura S. Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Antimicrob Agents Chemother. 1994 Sep;38(9):2014–2023. doi: 10.1128/aac.38.9.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jönsson K., Signäs C., Müller H. P., Lindberg M. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene. Eur J Biochem. 1991 Dec 18;202(3):1041–1048. doi: 10.1111/j.1432-1033.1991.tb16468.x. [DOI] [PubMed] [Google Scholar]
  18. Kaatz G. W., Seo S. M., Ruble C. A. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1993 May;37(5):1086–1094. doi: 10.1128/aac.37.5.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kernodle D. S., McGraw P. A., Barg N. L., Menzies B. E., Voladri R. K., Harshman S. Growth of Staphylococcus aureus with nafcillin in vitro induces alpha-toxin production and increases the lethal activity of sterile broth filtrates in a murine model. J Infect Dis. 1995 Aug;172(2):410–419. doi: 10.1093/infdis/172.2.410. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Liang O. D., Maccarana M., Flock J. I., Paulsson M., Preissner K. T., Wadström T. Multiple interactions between human vitronectin and Staphylococcus aureus. Biochim Biophys Acta. 1993 Nov 25;1225(1):57–63. doi: 10.1016/0925-4439(93)90122-h. [DOI] [PubMed] [Google Scholar]
  22. Lopes J. D., dos Reis M., Brentani R. R. Presence of laminin receptors in Staphylococcus aureus. Science. 1985 Jul 19;229(4710):275–277. doi: 10.1126/science.3160113. [DOI] [PubMed] [Google Scholar]
  23. McDevitt D., Francois P., Vaudaux P., Foster T. J. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol. 1994 Jan;11(2):237–248. doi: 10.1111/j.1365-2958.1994.tb00304.x. [DOI] [PubMed] [Google Scholar]
  24. Muder R. R., Brennen C., Wagener M. M., Vickers R. M., Rihs J. D., Hancock G. A., Yee Y. C., Miller J. M., Yu V. L. Methicillin-resistant staphylococcal colonization and infection in a long-term care facility. Ann Intern Med. 1991 Jan 15;114(2):107–112. doi: 10.7326/0003-4819-114-2-1-107. [DOI] [PubMed] [Google Scholar]
  25. Neyfakh A. A., Borsch C. M., Kaatz G. W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother. 1993 Jan;37(1):128–129. doi: 10.1128/aac.37.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ng E. Y., Trucksis M., Hooper D. C. Quinolone resistance mediated by norA: physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother. 1994 Jun;38(6):1345–1355. doi: 10.1128/aac.38.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ng E. Y., Trucksis M., Hooper D. C. Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob Agents Chemother. 1996 Aug;40(8):1881–1888. doi: 10.1128/aac.40.8.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Novick R. P., Projan S. J., Kornblum J., Ross H. F., Ji G., Kreiswirth B., Vandenesch F., Moghazeh S. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet. 1995 Aug 30;248(4):446–458. doi: 10.1007/BF02191645. [DOI] [PubMed] [Google Scholar]
  29. Ohshita Y., Hiramatsu K., Yokota T. A point mutation in norA gene is responsible for quinolone resistance in Staphylococcus aureus. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1028–1034. doi: 10.1016/0006-291x(90)91549-8. [DOI] [PubMed] [Google Scholar]
  30. Park P. W., Roberts D. D., Grosso L. E., Parks W. C., Rosenbloom J., Abrams W. R., Mecham R. P. Binding of elastin to Staphylococcus aureus. J Biol Chem. 1991 Dec 5;266(34):23399–23406. [PubMed] [Google Scholar]
  31. Patel A. H., Nowlan P., Weavers E. D., Foster T. Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun. 1987 Dec;55(12):3103–3110. doi: 10.1128/iai.55.12.3103-3110.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Patti J. M., Allen B. L., McGavin M. J., Hök M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol. 1994;48:585–617. doi: 10.1146/annurev.mi.48.100194.003101. [DOI] [PubMed] [Google Scholar]
  33. Patti J. M., Boles J. O., Hök M. Identification and biochemical characterization of the ligand binding domain of the collagen adhesin from Staphylococcus aureus. Biochemistry. 1993 Oct 26;32(42):11428–11435. doi: 10.1021/bi00093a021. [DOI] [PubMed] [Google Scholar]
  34. Patti J. M., Bremell T., Krajewska-Pietrasik D., Abdelnour A., Tarkowski A., Rydén C., Hök M. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun. 1994 Jan;62(1):152–161. doi: 10.1128/iai.62.1.152-161.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Patti J. M., House-Pompeo K., Boles J. O., Garza N., Gurusiddappa S., Hök M. Critical residues in the ligand-binding site of the Staphylococcus aureus collagen-binding adhesin (MSCRAMM). J Biol Chem. 1995 May 19;270(20):12005–12011. doi: 10.1074/jbc.270.20.12005. [DOI] [PubMed] [Google Scholar]
  36. Patti J. M., Jonsson H., Guss B., Switalski L. M., Wiberg K., Lindberg M., Hök M. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J Biol Chem. 1992 Mar 5;267(7):4766–4772. [PubMed] [Google Scholar]
  37. Peterson L. R., Willard K. E., Sinn L. M., Fasching C. E., Gerding D. N. GyrA sequence analysis of Staphylococcus aureus and methicillin-resistant S. aureus strains selected, in vitro, for high-level ciprofloxacin resistance. Diagn Microbiol Infect Dis. 1993 Aug-Sep;17(2):97–101. doi: 10.1016/0732-8893(93)90019-4. [DOI] [PubMed] [Google Scholar]
  38. Proctor R. A., Hamill R. J., Mosher D. F., Textor J. A., Olbrantz P. J. Effects of subinhibitory concentrations of antibiotics on Staphylococcus aureus interactions with fibronectin. J Antimicrob Chemother. 1983 Oct;12 (Suppl 100):85–95. doi: 10.1093/jac/12.suppl_c.85. [DOI] [PubMed] [Google Scholar]
  39. Proctor R. A., Olbrantz P. J., Mosher D. F. Subinhibitory concentrations of antibiotics alter fibronectin binding to Staphylococcus aureus. Antimicrob Agents Chemother. 1983 Nov;24(5):823–826. doi: 10.1128/aac.24.5.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sanford M. D., Widmer A. F., Bale M. J., Jones R. N., Wenzel R. P. Efficient detection and long-term persistence of the carriage of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 1994 Dec;19(6):1123–1128. doi: 10.1093/clinids/19.6.1123. [DOI] [PubMed] [Google Scholar]
  41. Schifferli D. M., Beachey E. H. Bacterial adhesion: modulation by antibiotics which perturb protein synthesis. Antimicrob Agents Chemother. 1988 Nov;32(11):1603–1608. doi: 10.1128/aac.32.11.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shibl A. M. Influence of subinhibitory concentrations of antibiotics on virulence of staphylococci. Rev Infect Dis. 1987 Jul-Aug;9(4):704–712. doi: 10.1093/clinids/9.4.704. [DOI] [PubMed] [Google Scholar]
  43. Sonstein S. A., Burnham J. C. Effect of low concentrations of quinolone antibiotics on bacterial virulence mechanisms. Diagn Microbiol Infect Dis. 1993 May-Jun;16(4):277–289. doi: 10.1016/0732-8893(93)90078-l. [DOI] [PubMed] [Google Scholar]
  44. Spycher M. O., Nydegger U. E. Part of the activating cross-linked immunoglobulin G is internalized by human platelets to sites not accessible for enzymatic digestion. Blood. 1986 Jan;67(1):12–18. [PubMed] [Google Scholar]
  45. Stahl M. L., Pattee P. A. Confirmation of protoplast fusion-derived linkages in Staphylococcus aureus by transformation with protoplast DNA. J Bacteriol. 1983 Apr;154(1):406–412. doi: 10.1128/jb.154.1.406-412.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tanaka M., Zhang Y. X., Ishida H., Akasaka T., Sato K., Hayakawa I. Mechanisms of 4-quinolone resistance in quinolone-resistant and methicillin-resistant Staphylococcus aureus isolates from Japan and China. J Med Microbiol. 1995 Mar;42(3):214–219. doi: 10.1099/00222615-42-3-214. [DOI] [PubMed] [Google Scholar]
  47. Tankovic J., Duval J., Courvalin P. Construction of a gyrA plasmid for genetic characterization of fluoroquinolone-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol. 1994 Jun;9(1):35–39. doi: 10.1111/j.1574-695X.1994.tb00471.x. [DOI] [PubMed] [Google Scholar]
  48. Trucksis M., Hooper D. C., Wolfson J. S. Emerging resistance to fluoroquinolones in staphylococci: an alert. Ann Intern Med. 1991 Mar 1;114(5):424–426. doi: 10.7326/0003-4819-114-5-424. [DOI] [PubMed] [Google Scholar]
  49. Trucksis M., Wolfson J. S., Hooper D. C. A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus. J Bacteriol. 1991 Sep;173(18):5854–5860. doi: 10.1128/jb.173.18.5854-5860.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vaudaux P. E., François P., Proctor R. A., McDevitt D., Foster T. J., Albrecht R. M., Lew D. P., Wabers H., Cooper S. L. Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts. Infect Immun. 1995 Feb;63(2):585–590. doi: 10.1128/iai.63.2.585-590.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vaudaux P. E., Waldvogel F. A., Morgenthaler J. J., Nydegger U. E. Adsorption of fibronectin onto polymethylmethacrylate and promotion of Staphylococcus aureus adherence. Infect Immun. 1984 Sep;45(3):768–774. doi: 10.1128/iai.45.3.768-774.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vaudaux P., Pittet D., Haeberli A., Huggler E., Nydegger U. E., Lew D. P., Waldvogel F. A. Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis. 1989 Nov;160(5):865–875. doi: 10.1093/infdis/160.5.865. [DOI] [PubMed] [Google Scholar]
  53. Vaudaux P., Pittet D., Haeberli A., Lerch P. G., Morgenthaler J. J., Proctor R. A., Waldvogel F. A., Lew D. P. Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis. 1993 Mar;167(3):633–641. doi: 10.1093/infdis/167.3.633. [DOI] [PubMed] [Google Scholar]
  54. Vaudaux P., Suzuki R., Waldvogel F. A., Morgenthaler J. J., Nydegger U. E. Foreign body infection: role of fibronectin as a ligand for the adherence of Staphylococcus aureus. J Infect Dis. 1984 Oct;150(4):546–553. doi: 10.1093/infdis/150.4.546. [DOI] [PubMed] [Google Scholar]
  55. Yacoub A., Lindahl P., Rubin K., Wendel M., Heinegård D., Rydén C. Purification of a bone sialoprotein-binding protein from Staphylococcus aureus. Eur J Biochem. 1994 Jun 15;222(3):919–925. doi: 10.1111/j.1432-1033.1994.tb18940.x. [DOI] [PubMed] [Google Scholar]
  56. Yamagishi J., Kojima T., Oyamada Y., Fujimoto K., Hattori H., Nakamura S., Inoue M. Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1996 May;40(5):1157–1163. doi: 10.1128/aac.40.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES