Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):918–923. doi: 10.1128/aac.41.5.918

Modulation of the metabolism of beta-L-(-)-2',3'-dideoxy-3'-thiacytidine by thymidine, fludarabine, and nitrobenzylthioinosine.

J J Rahn 1, D M Kieller 1, D L Tyrrell 1, W P Gati 1
PMCID: PMC163825  PMID: 9145844

Abstract

beta-L-(-)-2',3'-Dideoxy-3'-thiacytidine (3TC) is a cytosine nucleoside analog that potently inhibits the replication of human and duck hepatitis B viruses and human immunodeficiency virus through the activity of its 5'-triphosphate ester metabolite. The present study examined the intracellular decay of 3TC 5'-phosphates and tested strategies for modulating the cellular content of those nucleotides in primary cultures of duck hepatocytes and in human hepatoma 2.2.15 cells and CCRF-CEM T lymphoblasts. Inhibition by deoxycytidine of the 5'-phosphorylation of 3TC in duck hepatocytes confirmed that, as in mammalian cells, deoxycytidine kinase catalyzed 3TC activation. The 5'-mono, 5'-di-, and 5'-triphosphates of 3TC underwent monoexponential elimination from duck hepatocytes and 2.2.15 cells (half-lives, 3.6 to 8.0 h). Thymidine and fludarabine, which are agents that enhance the activity of deoxycytidine kinase, were tested in strategies for increasing the cellular content of 3TC 5'-phosphates. Coordinate treatment of cells with 3TC and thymidine (50 microM) increased the content of 3TC 5'-monophosphate in duck hepatocytes and the content of 3TC 5'-di- and 5'-triphosphates in 2.2.15 cells, but enhancement of 3TC 5'-phosphate levels in CCRF-CEM cells required a higher thymidine concentration (100 microM). Fludarabine (5 microM) did not affect the contents of 3TC 5'-di- and 5'-triphosphates in duck hepatocytes, but modestly increased the contents of those nucleotides in 2.2.15 cells and CCRF-CEM cells. Nitrobenzylthioinosine (NBMPR), an inhibitor of the es facilitated diffusion nucleoside transporter, reduced the level of entry of 3TC into 2.2.15 cells and abolished inward fluxes of thymidine, adenosine, and deoxycytidine. In 2.2.15 cells and CCRF-CEM cells, NBMPR reduced the formation of 3TC 5'-di- and 5'-triphosphates and reversed the thymidine- and fludarabine-induced increases in the formation of those nucleotides. NBMPR protected against the cytotoxicity of 3TC in CCRF-CEM cells, whereas thymidine potentiated that toxicity, apparently by enhancing the formation of 3TC 5'-triphosphate. Taken together, these results indicate that deoxycytidine kinase and the es nucleoside transporter are targets for manipulation of the metabolism and activity of 3TC.

Full Text

The Full Text of this article is available as a PDF (332.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adjei A. A., Dagnino L., Wong M. M., Paterson A. R. Protection against fludarabine neurotoxicity in leukemic mice by the nucleoside transport inhibitor nitrobenzylthioinosine. Cancer Chemother Pharmacol. 1992;31(1):71–75. doi: 10.1007/BF00695997. [DOI] [PubMed] [Google Scholar]
  2. Alessi-Severini S., Gati W. P., Belch A. R., Paterson A. R. Intracellular pharmacokinetics of 2-chlorodeoxyadenosine in leukemia cells from patients with chronic lymphocytic leukemia. Leukemia. 1995 Oct;9(10):1674–1679. [PubMed] [Google Scholar]
  3. Alley M. C., Scudiero D. A., Monks A., Hursey M. L., Czerwinski M. J., Fine D. L., Abbott B. J., Mayo J. G., Shoemaker R. H., Boyd M. R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988 Feb 1;48(3):589–601. [PubMed] [Google Scholar]
  4. Balzarini J., Cooney D. A., Dalal M., Kang G. J., Cupp J. E., DeClercq E., Broder S., Johns D. G. 2',3'-Dideoxycytidine: regulation of its metabolism and anti-retroviral potency by natural pyrimidine nucleosides and by inhibitors of pyrimidine nucleotide synthesis. Mol Pharmacol. 1987 Dec;32(6):798–806. [PubMed] [Google Scholar]
  5. Belt J. A., Marina N. M., Phelps D. A., Crawford C. R. Nucleoside transport in normal and neoplastic cells. Adv Enzyme Regul. 1993;33:235–252. doi: 10.1016/0065-2571(93)90021-5. [DOI] [PubMed] [Google Scholar]
  6. Blumenreich M. S., Chou T. C., Andreeff M., Vale K., Clarkson B. D., Young C. W. Thymidine as a kinetic and biochemical modulator of 1-beta-D-arabinofuranosylcytosine in human acute nonlymphocytic leukemia. Cancer Res. 1984 Feb;44(2):825–830. [PubMed] [Google Scholar]
  7. Cammack N., Rouse P., Marr C. L., Reid P. J., Boehme R. E., Coates J. A., Penn C. R., Cameron J. M. Cellular metabolism of (-) enantiomeric 2'-deoxy-3'-thiacytidine. Biochem Pharmacol. 1992 May 28;43(10):2059–2064. doi: 10.1016/0006-2952(92)90162-c. [DOI] [PubMed] [Google Scholar]
  8. Chang C. N., Skalski V., Zhou J. H., Cheng Y. C. Biochemical pharmacology of (+)- and (-)-2',3'-dideoxy-3'-thiacytidine as anti-hepatitis B virus agents. J Biol Chem. 1992 Nov 5;267(31):22414–22420. [PubMed] [Google Scholar]
  9. Coates J. A., Cammack N., Jenkinson H. J., Jowett A. J., Jowett M. I., Pearson B. A., Penn C. R., Rouse P. L., Viner K. C., Cameron J. M. (-)-2'-deoxy-3'-thiacytidine is a potent, highly selective inhibitor of human immunodeficiency virus type 1 and type 2 replication in vitro. Antimicrob Agents Chemother. 1992 Apr;36(4):733–739. doi: 10.1128/aac.36.4.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coates J. A., Cammack N., Jenkinson H. J., Mutton I. M., Pearson B. A., Storer R., Cameron J. M., Penn C. R. The separated enantiomers of 2'-deoxy-3'-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replication in vitro. Antimicrob Agents Chemother. 1992 Jan;36(1):202–205. doi: 10.1128/aac.36.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doong S. L., Tsai C. H., Schinazi R. F., Liotta D. C., Cheng Y. C. Inhibition of the replication of hepatitis B virus in vitro by 2',3'-dideoxy-3'-thiacytidine and related analogues. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8495–8499. doi: 10.1073/pnas.88.19.8495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gandhi V., Estey E., Keating M. J., Plunkett W. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol. 1993 Jan;11(1):116–124. doi: 10.1200/JCO.1993.11.1.116. [DOI] [PubMed] [Google Scholar]
  14. Gandhi V., Plunkett W. Modulation of arabinosylnucleoside metabolism by arabinosylnucleotides in human leukemia cells. Cancer Res. 1988 Jan 15;48(2):329–334. [PubMed] [Google Scholar]
  15. Hart G. J., Orr D. C., Penn C. R., Figueiredo H. T., Gray N. M., Boehme R. E., Cameron J. M. Effects of (-)-2'-deoxy-3'-thiacytidine (3TC) 5'-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases alpha, beta, and gamma. Antimicrob Agents Chemother. 1992 Aug;36(8):1688–1694. doi: 10.1128/aac.36.8.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heinemann V., Hertel L. W., Grindey G. B., Plunkett W. Comparison of the cellular pharmacokinetics and toxicity of 2',2'-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1988 Jul 15;48(14):4024–4031. [PubMed] [Google Scholar]
  17. Heinemann V., Xu Y. Z., Chubb S., Sen A., Hertel L. W., Grindey G. B., Plunkett W. Cellular elimination of 2',2'-difluorodeoxycytidine 5'-triphosphate: a mechanism of self-potentiation. Cancer Res. 1992 Feb 1;52(3):533–539. [PubMed] [Google Scholar]
  18. Jarvis S. M., Young J. D. Photoaffinity labelling of nucleoside transporter polypeptides. Pharmacol Ther. 1987;32(3):339–359. doi: 10.1016/0163-7258(87)90080-5. [DOI] [PubMed] [Google Scholar]
  19. Kemena A., Fernandez M., Bauman J., Keating M., Plunkett W. A sensitive fluorescence assay for quantitation of fludarabine and metabolites in biological fluids. Clin Chim Acta. 1991 Aug 30;200(2-3):95–106. doi: 10.1016/0009-8981(91)90081-m. [DOI] [PubMed] [Google Scholar]
  20. Lynch T. P., Jakobs E. S., Paran J. H., Paterson A. R. Treatment of mouse neoplasms with high doses of tubercidin. Cancer Res. 1981 Aug;41(8):3200–3204. [PubMed] [Google Scholar]
  21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  22. Motulsky H. J., Ransnas L. A. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987 Nov;1(5):365–374. [PubMed] [Google Scholar]
  23. Paff M. T., Averett D. R., Prus K. L., Miller W. H., Nelson D. J. Intracellular metabolism of (-)- and (+)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine in HepG2 derivative 2.2.15 (subclone P5A) cells. Antimicrob Agents Chemother. 1994 Jun;38(6):1230–1238. doi: 10.1128/aac.38.6.1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paterson A. R., Harley E. R., Cass C. E. Inward fluxes of adenosine in erythrocytes and cultured cells measured by a quenched-flow method. Biochem J. 1984 Dec 15;224(3):1001–1008. doi: 10.1042/bj2241001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pluda J. M., Cooley T. P., Montaner J. S., Shay L. E., Reinhalter N. E., Warthan S. N., Ruedy J., Hirst H. M., Vicary C. A., Quinn J. B. A phase I/II study of 2'-deoxy-3'-thiacytidine (lamivudine) in patients with advanced human immunodeficiency virus infection. J Infect Dis. 1995 Jun;171(6):1438–1447. doi: 10.1093/infdis/171.6.1438. [DOI] [PubMed] [Google Scholar]
  26. Schinazi R. F., Chu C. K., Peck A., McMillan A., Mathis R., Cannon D., Jeong L. S., Beach J. W., Choi W. B., Yeola S. Activities of the four optical isomers of 2',3'-dideoxy-3'-thiacytidine (BCH-189) against human immunodeficiency virus type 1 in human lymphocytes. Antimicrob Agents Chemother. 1992 Mar;36(3):672–676. doi: 10.1128/aac.36.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Severini A., Liu X. Y., Wilson J. S., Tyrrell D. L. Mechanism of inhibition of duck hepatitis B virus polymerase by (-)-beta-L-2',3'-dideoxy-3'-thiacytidine. Antimicrob Agents Chemother. 1995 Jul;39(7):1430–1435. doi: 10.1128/aac.39.7.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shewach D. S., Liotta D. C., Schinazi R. F. Affinity of the antiviral enantiomers of oxathiolane cytosine nucleosides for human 2'-deoxycytidine kinase. Biochem Pharmacol. 1993 Apr 6;45(7):1540–1543. doi: 10.1016/0006-2952(93)90058-5. [DOI] [PubMed] [Google Scholar]
  29. Sirotnak F. M., Chello P. L., Dorick D. M., Montgomery J. A. Specificity of systems mediating transport of adenosine, 9-beta-d-arabinofuranosyl-2-fluoroadenine, and other purine nucleoside analogues in L1210 cells. Cancer Res. 1983 Jan;43(1):104–109. [PubMed] [Google Scholar]
  30. Sommadossi J. P., Schinazi R. F., Chu C. K., Xie M. Y. Comparison of cytotoxicity of the (-)- and (+)-enantiomer of 2',3'-dideoxy-3'-thiacytidine in normal human bone marrow progenitor cells. Biochem Pharmacol. 1992 Nov 17;44(10):1921–1925. doi: 10.1016/0006-2952(92)90093-x. [DOI] [PubMed] [Google Scholar]
  31. Starnes M. C., Cheng Y. C. Cellular metabolism of 2',3'-dideoxycytidine, a compound active against human immunodeficiency virus in vitro. J Biol Chem. 1987 Jan 25;262(3):988–991. [PubMed] [Google Scholar]
  32. el Kouni M. H., Messier N. J., Cha S. Treatment of schistosomiasis by purine nucleoside analogues in combination with nucleoside transport inhibitors. Biochem Pharmacol. 1987 Nov 15;36(22):3815–3821. doi: 10.1016/0006-2952(87)90443-6. [DOI] [PubMed] [Google Scholar]
  33. van Leeuwen R., Katlama C., Kitchen V., Boucher C. A., Tubiana R., McBride M., Ingrand D., Weber J., Hill A., McDade H. Evaluation of safety and efficacy of 3TC (lamivudine) in patients with asymptomatic or mildly symptomatic human immunodeficiency virus infection: a phase I/II study. J Infect Dis. 1995 May;171(5):1166–1171. doi: 10.1093/infdis/171.5.1166. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES