Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):924–926. doi: 10.1128/aac.41.5.924

Metabolism of rifabutin and its 25-desacetyl metabolite, LM565, by human liver microsomes and recombinant human cytochrome P-450 3A4: relevance to clinical interaction with fluconazole.

C B Trapnell 1, C Jamis-Dow 1, R W Klecker 1, J M Collins 1
PMCID: PMC163826  PMID: 9145845

Abstract

Rifabutin and fluconazole are often given concomitantly as therapy to prevent opportunistic infections in individuals infected with the human immunodeficiency virus. Recent reports have shown increased levels of rifabutin and its 25-desacetyl metabolite, LM565, in plasma when rifabutin is administered with fluconazole. Since fluconazole is known to inhibit microsomal enzymes, this study was undertaken to determine if this rifabutin-fluconazole interaction was due to an inhibition of human hepatic enzymes. The metabolism of both rifabutin and LM565 was evaluated in human liver microsomes and recombinant human cytochrome P-450 (CYP) 3A4 in the presence of fluconazole and other probe drugs known to inhibit CYP groups 1A2, 2C9, 2D6, 2E1, and 3A. The concentrations of rifabutin (1 microg/ml), LM565 (1 microg/ml), and fluconazole (10 and 100 microg/ml) used were equal to those observed in plasma after the administration of rifabutin and fluconazole at clinically relevant doses. High-performance liquid chromatography was used to assess the metabolism of rifabutin and LM565. Rifabutin was readily metabolized to LM565 by human microsomes, but the reaction was independent of NADPH and was not affected by the P-450 inhibitors. No rifabutin metabolism by recombinant CYP 3A4 was found to occur. LM565 was also metabolized by human microsomes to two products, but metabolism was dependent on NADPH and was affected by certain P-450 inhibitors. In addition, LM565 was readily metabolized by the recombinant CYP 3A4 to the same two products found with its metabolism by human microsomes. Therefore, rifabutin is metabolized by human microsomes but not via cytochrome P-450 enzymes, whereas LM565 is metabolized by CYP 3A4.

Full Text

The Full Text of this article is available as a PDF (231.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anaissie E. J., Kontoyiannis D. P., Huls C., Vartivarian S. E., Karl C., Prince R. A., Bosso J., Bodey G. P. Safety, plasma concentrations, and efficacy of high-dose fluconazole in invasive mold infections. J Infect Dis. 1995 Aug;172(2):599–602. doi: 10.1093/infdis/172.2.599. [DOI] [PubMed] [Google Scholar]
  2. Chang T. K., Gonzalez F. J., Waxman D. J. Evaluation of triacetyloleandomycin, alpha-naphthoflavone and diethyldithiocarbamate as selective chemical probes for inhibition of human cytochromes P450. Arch Biochem Biophys. 1994 Jun;311(2):437–442. doi: 10.1006/abbi.1994.1259. [DOI] [PubMed] [Google Scholar]
  3. Frank M. O., Graham M. B., Wispelway B. Rifabutin and uveitis. N Engl J Med. 1994 Mar 24;330(12):868–868. doi: 10.1056/NEJM199403243301218. [DOI] [PubMed] [Google Scholar]
  4. Fuller J. D., Stanfield L. E., Craven D. E. Rifabutin prophylaxis and uveitis. N Engl J Med. 1994 May 5;330(18):1315–1316. doi: 10.1056/NEJM199405053301816. [DOI] [PubMed] [Google Scholar]
  5. Gallant J. E., Moore R. D., Chaisson R. E. Prophylaxis for opportunistic infections in patients with HIV infection. Ann Intern Med. 1994 Jun 1;120(11):932–944. doi: 10.7326/0003-4819-120-11-199406010-00006. [DOI] [PubMed] [Google Scholar]
  6. Havlir D., Torriani F., Dubé M. Uveitis associated with rifabutin prophylaxis. Ann Intern Med. 1994 Oct 1;121(7):510–512. doi: 10.7326/0003-4819-121-7-199410010-00006. [DOI] [PubMed] [Google Scholar]
  7. Honig P. K., Wortham D. C., Zamani K., Conner D. P., Mullin J. C., Cantilena L. R. Terfenadine-ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA. 1993 Mar 24;269(12):1513–1518. [PubMed] [Google Scholar]
  8. Jamis-Dow C. A., Klecker R. W., Katki A. G., Collins J. M. Metabolism of taxol by human and rat liver in vitro: a screen for drug interactions and interspecies differences. Cancer Chemother Pharmacol. 1995;36(2):107–114. doi: 10.1007/BF00689193. [DOI] [PubMed] [Google Scholar]
  9. Lewis R. C., Hatfield N. Z., Narang P. K. A sensitive method for quantitation of rifabutin and its desacetyl metabolite in human biological fluids by high-performance liquid chromatography (HPLC). Pharm Res. 1991 Nov;8(11):1434–1440. doi: 10.1023/a:1015865526655. [DOI] [PubMed] [Google Scholar]
  10. Maurice M., Pichard L., Daujat M., Fabre I., Joyeux H., Domergue J., Maurel P. Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J. 1992 Jan 6;6(2):752–758. doi: 10.1096/fasebj.6.2.1371482. [DOI] [PubMed] [Google Scholar]
  11. Monahan B. P., Ferguson C. L., Killeavy E. S., Lloyd B. K., Troy J., Cantilena L. R., Jr Torsades de pointes occurring in association with terfenadine use. JAMA. 1990 Dec 5;264(21):2788–2790. [PubMed] [Google Scholar]
  12. Morrow J. D. Fluconazole: a new triazole antifungal agent. Am J Med Sci. 1991 Aug;302(2):129–132. doi: 10.1097/00000441-199108000-00012. [DOI] [PubMed] [Google Scholar]
  13. Narang P. K., Trapnell C. B., Schoenfelder J. R., Lavelle J. P., Bianchine J. R. Fluconazole and enhanced effect of rifabutin prophylaxis. N Engl J Med. 1994 May 5;330(18):1316–1317. doi: 10.1056/NEJM199405053301817. [DOI] [PubMed] [Google Scholar]
  14. Nightingale S. D., Cameron D. W., Gordin F. M., Sullam P. M., Cohn D. L., Chaisson R. E., Eron L. J., Sparti P. D., Bihari B., Kaufman D. L. Two controlled trials of rifabutin prophylaxis against Mycobacterium avium complex infection in AIDS. N Engl J Med. 1993 Sep 16;329(12):828–833. doi: 10.1056/NEJM199309163291202. [DOI] [PubMed] [Google Scholar]
  15. Perucca E., Grimaldi R., Frigo G. M., Sardi A., Mönig H., Ohnhaus E. E. Comparative effects of rifabutin and rifampicin on hepatic microsomal enzyme activity in normal subjects. Eur J Clin Pharmacol. 1988;34(6):595–599. doi: 10.1007/BF00615223. [DOI] [PubMed] [Google Scholar]
  16. Powderly W. G., Finkelstein D., Feinberg J., Frame P., He W., van der Horst C., Koletar S. L., Eyster M. E., Carey J., Waskin H. A randomized trial comparing fluconazole with clotrimazole troches for the prevention of fungal infections in patients with advanced human immunodeficiency virus infection. NIAID AIDS Clinical Trials Group. N Engl J Med. 1995 Mar 16;332(11):700–705. doi: 10.1056/NEJM199503163321102. [DOI] [PubMed] [Google Scholar]
  17. Shafran S. D., Deschênes J., Miller M., Phillips P., Toma E. Uveitis and pseudojaundice during a regimen of clarithromycin, rifabutin, and ethambutol. MAC Study Group of the Canadian HIV Trials Network. N Engl J Med. 1994 Feb 10;330(6):438–439. doi: 10.1056/NEJM199402103300616. [DOI] [PubMed] [Google Scholar]
  18. Skinner M. H., Blaschke T. F. Clinical pharmacokinetics of rifabutin. Clin Pharmacokinet. 1995 Feb;28(2):115–125. doi: 10.2165/00003088-199528020-00003. [DOI] [PubMed] [Google Scholar]
  19. Skinner M. H., Hsieh M., Torseth J., Pauloin D., Bhatia G., Harkonen S., Merigan T. C., Blaschke T. F. Pharmacokinetics of rifabutin. Antimicrob Agents Chemother. 1989 Aug;33(8):1237–1241. doi: 10.1128/aac.33.8.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strolin Benedetti M., Dostert P. Induction and autoinduction properties of rifamycin derivatives: a review of animal and human studies. Environ Health Perspect. 1994 Nov;102 (Suppl 9):101–105. doi: 10.1289/ehp.94102s9101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strolin Benedetti M., Efthymiopoulos C., Sassella D., Moro E., Repetto M. Autoinduction of rifabutin metabolism in man. Xenobiotica. 1990 Nov;20(11):1113–1119. doi: 10.3109/00498259009046832. [DOI] [PubMed] [Google Scholar]
  22. Trapnell C. B., Narang P. K., Li R., Lavelle J. P. Increased plasma rifabutin levels with concomitant fluconazole therapy in HIV-infected patients. Ann Intern Med. 1996 Mar 15;124(6):573–576. doi: 10.7326/0003-4819-124-6-199603150-00006. [DOI] [PubMed] [Google Scholar]
  23. Tsao S. C., Dickinson T. H., Abernethy D. R. Metabolite inhibition of parent drug biotransformation. Studies of diltiazem. Drug Metab Dispos. 1990 Mar-Apr;18(2):180–182. [PubMed] [Google Scholar]
  24. Wallace R. J., Jr, Brown B. A., Griffith D. E., Girard W., Tanaka K. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M. intracellulare infection. J Infect Dis. 1995 Mar;171(3):747–750. doi: 10.1093/infdis/171.3.747. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES