Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Aug;108(8):769–776. doi: 10.1289/ehp.00108769

Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression.

L P Walsh 1, C McCormick 1, C Martin 1, D M Stocco 1
PMCID: PMC1638308  PMID: 10964798

Abstract

Recent reports demonstrate that many currently used pesticides have the capacity to disrupt reproductive function in animals. Although this reproductive dysfunction is typically characterized by alterations in serum steroid hormone levels, disruptions in spermatogenesis, and loss of fertility, the mechanisms involved in pesticide-induced infertility remain unclear. Because testicular Leydig cells play a crucial role in male reproductive function by producing testosterone, we used the mouse MA-10 Leydig tumor cell line to study the molecular events involved in pesticide-induced alterations in steroid hormone biosynthesis. We previously showed that the organochlorine insecticide lindane and the organophosphate insecticide Dimethoate directly inhibit steroidogenesis in Leydig cells by disrupting expression of the steroidogenic acute regulatory (StAR) protein. StAR protein mediates the rate-limiting and acutely regulated step in steroidogenesis, the transfer of cholesterol from the outer to the inner mitochondrial membrane where the cytochrome P450 side chain cleavage (P450scc) enzyme initiates the synthesis of all steroid hormones. In the present study, we screened eight currently used pesticide formulations for their ability to inhibit steroidogenesis, concentrating on their effects on StAR expression in MA-10 cells. In addition, we determined the effects of these compounds on the levels and activities of the P450scc enzyme (which converts cholesterol to pregnenolone) and the 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzyme (which converts pregnenolone to progesterone). Of the pesticides screened, only the pesticide Roundup inhibited dibutyryl [(Bu)(2)]cAMP-stimulated progesterone production in MA-10 cells without causing cellular toxicity. Roundup inhibited steroidogenesis by disrupting StAR protein expression, further demonstrating the susceptibility of StAR to environmental pollutants.

Full text

PDF
769

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abd el-Aziz M. I., Sahlab A. M., Abd el-Khalik M. Influence of diazinon and deltamethrin on reproductive organs and fertility of male rats. Dtsch Tierarztl Wochenschr. 1994 Jun;101(6):230–232. [PubMed] [Google Scholar]
  2. Afifi N. A., Ramadan A., el-Aziz M. I., Saki E. E. Influence of dimethoate on testicular and epididymal organs, testosterone plasma level and their tissue residues in rats. Dtsch Tierarztl Wochenschr. 1991 Nov;98(11):419–423. [PubMed] [Google Scholar]
  3. Anakwe O. O., Payne A. H. Noncoordinate regulation of de novo synthesis of cytochrome P-450 cholesterol side-chain cleavage and cytochrome P-450 17 alpha-hydroxylase/C17-20 lyase in mouse Leydig cell cultures: relation to steroid production. Mol Endocrinol. 1987 Sep;1(9):595–603. doi: 10.1210/mend-1-9-595. [DOI] [PubMed] [Google Scholar]
  4. Arakane F., Kallen C. B., Watari H., Foster J. A., Sepuri N. B., Pain D., Stayrook S. E., Lewis M., Gerton G. L., Strauss J. F., 3rd The mechanism of action of steroidogenic acute regulatory protein (StAR). StAR acts on the outside of mitochondria to stimulate steroidogenesis. J Biol Chem. 1998 Jun 26;273(26):16339–16345. doi: 10.1074/jbc.273.26.16339. [DOI] [PubMed] [Google Scholar]
  5. Ascoli M. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology. 1981 Jan;108(1):88–95. doi: 10.1210/endo-108-1-88. [DOI] [PubMed] [Google Scholar]
  6. Bosmann H. B., Hales K. H., Li X., Liu Z., Stocco D. M., Hales D. B. Acute in vivo inhibition of testosterone by endotoxin parallels loss of steroidogenic acute regulatory (StAR) protein in Leydig cells. Endocrinology. 1996 Oct;137(10):4522–4525. doi: 10.1210/endo.137.10.8828518. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Caron K. M., Soo S. C., Wetsel W. C., Stocco D. M., Clark B. J., Parker K. L. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11540–11545. doi: 10.1073/pnas.94.21.11540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Christenson L. K., McAllister J. M., Martin K. O., Javitt N. B., Osborne T. F., Strauss J. F., 3rd Oxysterol regulation of steroidogenic acute regulatory protein gene expression. Structural specificity and transcriptional and posttranscriptional actions. J Biol Chem. 1998 Nov 13;273(46):30729–30735. doi: 10.1074/jbc.273.46.30729. [DOI] [PubMed] [Google Scholar]
  10. Clark B. J., Wells J., King S. R., Stocco D. M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994 Nov 11;269(45):28314–28322. [PubMed] [Google Scholar]
  11. Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fiedler E. P., Plouffe L., Jr, Hales D. B., Hales K. H., Khan I. Prostaglandin F(2alpha) induces a rapid decline in progesterone production and steroidogenic acute regulatory protein expression in isolated rat corpus luteum without altering messenger ribonucleic acid expression. Biol Reprod. 1999 Sep;61(3):643–650. doi: 10.1095/biolreprod61.3.643. [DOI] [PubMed] [Google Scholar]
  13. Garren L. D., Ney R. L., Davis W. W. Studies on the role of protein synthesis in the regulation of corticosterone production by adrenocorticotropic hormone in vivo. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1443–1450. doi: 10.1073/pnas.53.6.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McFarlane J. R., Laslett A., de Kretser D. M., Risbridger G. P. Evidence that heparin binding autocrine factors modulate testosterone production by the adult rat Leydig cell. Mol Cell Endocrinol. 1996 Apr 19;118(1-2):57–63. doi: 10.1016/0303-7207(96)03766-5. [DOI] [PubMed] [Google Scholar]
  15. Miller W. L., Strauss J. F., 3rd Molecular pathology and mechanism of action of the steroidogenic acute regulatory protein, StAR. J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):131–141. doi: 10.1016/s0960-0760(98)00153-8. [DOI] [PubMed] [Google Scholar]
  16. Nolan C. J., Payne A. H. Genotype at the P450scc locus determines differences in the amount of P450scc protein and maximal testosterone production in mouse Leydig cells. Mol Endocrinol. 1990 Oct;4(10):1459–1464. doi: 10.1210/mend-4-10-1459. [DOI] [PubMed] [Google Scholar]
  17. Nunez S., Trant J. M. Regulation of interrenal gland steroidogenesis in the Atlantic stingray (Dasyatis sabina). J Exp Zool. 1999 Oct 1;284(5):517–525. [PubMed] [Google Scholar]
  18. Ohno Y., Yanagibashi K., Yonezawa Y., Ishiwatari S., Matsuba M. A possible role of "steroidogenic factor" in the corticoidogenic response to ACTH; effect of ACTH, cycloheximide and aminoglutethimide on the content of cholesterol in the outer and inner mitochondrial membrane of rat adrenal cortex. Endocrinol Jpn. 1983 Jun;30(3):335–338. doi: 10.1507/endocrj1954.30.335. [DOI] [PubMed] [Google Scholar]
  19. Phillips M. C., Johnson W. J., Rothblat G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta. 1987 Jun 24;906(2):223–276. doi: 10.1016/0304-4157(87)90013-x. [DOI] [PubMed] [Google Scholar]
  20. Pon L. A., Hartigan J. A., Orme-Johnson N. R. Acute ACTH regulation of adrenal corticosteroid biosynthesis. Rapid accumulation of a phosphoprotein. J Biol Chem. 1986 Oct 5;261(28):13309–13316. [PubMed] [Google Scholar]
  21. Reinhart A. J., Williams S. C., Stocco D. M. Transcriptional regulation of the StAR gene. Mol Cell Endocrinol. 1999 May 25;151(1-2):161–169. doi: 10.1016/s0303-7207(98)00257-3. [DOI] [PubMed] [Google Scholar]
  22. Resko J. A., Norman R. L., Niswender G. D., Spies H. G. The relationship between progestins and gonadotropins during the late luteal phase of the menstrual cycle in rhesus monkeys. Endocrinology. 1974 Jan;94(1):128–135. doi: 10.1210/endo-94-1-128. [DOI] [PubMed] [Google Scholar]
  23. Rybczynski R., Gilbert L. I. Changes in general and specific protein synthesis that accompany ecdysteroid synthesis in stimulated prothoracic glands of Manduca sexta. Insect Biochem Mol Biol. 1994 Feb;24(2):175–189. doi: 10.1016/0965-1748(94)90084-1. [DOI] [PubMed] [Google Scholar]
  24. Shtenberg A. I., Rybakova M. N. Effect of carbaryl on the neuroendocrine system of rats. Food Cosmet Toxicol. 1968 Dec;6(4):461–467. doi: 10.1016/0015-6264(68)90136-3. [DOI] [PubMed] [Google Scholar]
  25. Simpson E. R., Boyd G. S. The cholesterol side-chain cleavage system of the adrenal cortex: a mixed-function oxidase. Biochem Biophys Res Commun. 1966 Jul 6;24(1):10–17. doi: 10.1016/0006-291x(66)90402-5. [DOI] [PubMed] [Google Scholar]
  26. Simpson E. R., McCarthy J. L., Peterson J. A. Evidence that the cycloheximide-sensitive site of adrenocorticotropic hormone action is in the mitochondrion. Changes in pregnenolone formation, cholesterol content, and the electron paramagnetic resonance spectra of cytochrome P-450. J Biol Chem. 1978 May 10;253(9):3135–3139. [PubMed] [Google Scholar]
  27. Stocco D. M., Clark B. J. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996 Jun;17(3):221–244. doi: 10.1210/edrv-17-3-221. [DOI] [PubMed] [Google Scholar]
  28. Stocco D. M., Kilgore M. W. Induction of mitochondrial proteins in MA-10 Leydig tumour cells with human choriogonadotropin. Biochem J. 1988 Jan 1;249(1):95–103. doi: 10.1042/bj2490095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Strauss J. F., 3rd, Kallen C. B., Christenson L. K., Watari H., Devoto L., Arakane F., Kiriakidou M., Sugawara T. The steroidogenic acute regulatory protein (StAR): a window into the complexities of intracellular cholesterol trafficking. Recent Prog Horm Res. 1999;54:369–395. [PubMed] [Google Scholar]
  30. Sutton H. G., Fusco A., Cornwall G. A. Cystatin-related epididymal spermatogenic protein colocalizes with luteinizing hormone-beta protein in mouse anterior pituitary gonadotropes. Endocrinology. 1999 Jun;140(6):2721–2732. doi: 10.1210/endo.140.6.6777. [DOI] [PubMed] [Google Scholar]
  31. Tuckey R. C. Cholesterol side-chain cleavage by mitochondria from the human placenta. Studies using hydroxycholesterols as substrates. J Steroid Biochem Mol Biol. 1992 Sep;42(8):883–890. doi: 10.1016/0960-0760(92)90097-3. [DOI] [PubMed] [Google Scholar]
  32. Wang X., Liu Z., Eimerl S., Timberg R., Weiss A. M., Orly J., Stocco D. M. Effect of truncated forms of the steroidogenic acute regulatory protein on intramitochondrial cholesterol transfer. Endocrinology. 1998 Sep;139(9):3903–3912. doi: 10.1210/endo.139.9.6204. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES