Abstract
The chromosomal gene aac(6')-Ii, encoding an aminoglycoside 6'-N-acetyltransferase in Enterococcus faecium, renders this organism resistant to moderate levels of many aminoglycoside antibiotics. The ubiquitous presence of aac(6')-Ii in E. faecium complicates the selection of antibiotics for treatment of infections caused by this organism. In view of the importance of this enzyme, we have initiated studies to gain an understanding of its molecular mechanism of acetyl transfer. The AAC(6')-Ii enzyme was overexpressed in Escherichia coli and purified in a simple three-step procedure which yields 55 mg of pure dimeric protein per liter of cell culture. Steady-state kinetic analyses revealed a broad substrate specificity and demonstrated that acetylation occurs exclusively at position N-6'. k(cat)/Km values were on the order of 10(4) M(-1) s(-1), which is relatively low compared to other aminoglycoside-modifying enzymes. In addition, MIC values were positively correlated with k(cat), the rate when the enzyme is saturated with the aminoglycoside substrate, and not with k(cat)/Km, the rate at low aminoglycoside (sub-Km) concentrations. These results describe an enzyme which is not optimally evolved for aminoglycoside inactivation and suggest that this chromosomally encoded enzyme may have an alternate physiological function.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bongaerts G. P., Molendijk L. Relation between aminoglycoside 2"-O-nucleotidyltransferase activity and aminoglycoside resistance. Antimicrob Agents Chemother. 1984 Feb;25(2):234–237. doi: 10.1128/aac.25.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen H. Y., Williams J. D. Transferable resistance and aminoglycoside-modifying enzymes in enterococci. J Med Microbiol. 1985 Oct;20(2):187–196. doi: 10.1099/00222615-20-2-187. [DOI] [PubMed] [Google Scholar]
- Costa Y., Galimand M., Leclercq R., Duval J., Courvalin P. Characterization of the chromosomal aac(6')-Ii gene specific for Enterococcus faecium. Antimicrob Agents Chemother. 1993 Sep;37(9):1896–1903. doi: 10.1128/aac.37.9.1896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeHertogh D. A., Lerner S. A. Correlation of aminoglycoside resistance with the KmS and Vmax/Km ratios of enzymatic modification of aminoglycosides by 2''-O-nucleotidyltransferase. Antimicrob Agents Chemother. 1985 Apr;27(4):670–671. doi: 10.1128/aac.27.4.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorman D. E., Paschal J. W., Merkel K. E. 15N nuclear magnetic resonance spectroscopy. The nebramycin aminoglycosides. J Am Chem Soc. 1976 Oct 27;98(22):6885–6888. doi: 10.1021/ja00438a020. [DOI] [PubMed] [Google Scholar]
- Jacoby G. A. Antimicrobial-resistant pathogens in the 1990s. Annu Rev Med. 1996;47:169–179. doi: 10.1146/annurev.med.47.1.169. [DOI] [PubMed] [Google Scholar]
- Leslie A. G., Moody P. C., Shaw W. V. Structure of chloramphenicol acetyltransferase at 1.75-A resolution. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4133–4137. doi: 10.1073/pnas.85.12.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macinga D. R., Rather P. N. aarD, a Providencia stuartii homologue of cydD: role in 2'-N-acetyltransferase expression, cell morphology and growth in the presence of an extracellular factor. Mol Microbiol. 1996 Feb;19(3):511–520. doi: 10.1046/j.1365-2958.1996.385912.x. [DOI] [PubMed] [Google Scholar]
- McKay G. A., Thompson P. R., Wright G. D. Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: overexpression, purification, and substrate specificity. Biochemistry. 1994 Jun 7;33(22):6936–6944. doi: 10.1021/bi00188a024. [DOI] [PubMed] [Google Scholar]
- Moellering R. C., Jr, Korzeniowski O. M., Sande M. A., Wennersten C. B. Species-specific resistance to antimocrobial synergism in Streptococcus faecium and Streptococcus faecalis. J Infect Dis. 1979 Aug;140(2):203–208. doi: 10.1093/infdis/140.2.203. [DOI] [PubMed] [Google Scholar]
- Moellering R. C., Jr The Garrod Lecture. The enterococcus: a classic example of the impact of antimicrobial resistance on therapeutic options. J Antimicrob Chemother. 1991 Jul;28(1):1–12. doi: 10.1093/jac/28.1.1. [DOI] [PubMed] [Google Scholar]
- Moellering R. C., Jr, Wennersten C., Weinstein A. J. Penicillin-tobramycin synergism against enterococci: a comparison with penicillin and gentamicin. Antimicrob Agents Chemother. 1973 Apr;3(4):526–529. doi: 10.1128/aac.3.4.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray B. E. The life and times of the Enterococcus. Clin Microbiol Rev. 1990 Jan;3(1):46–65. doi: 10.1128/cmr.3.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payie K. G., Rather P. N., Clarke A. J. Contribution of gentamicin 2'-N-acetyltransferase to the O acetylation of peptidoglycan in Providencia stuartii. J Bacteriol. 1995 Aug;177(15):4303–4310. doi: 10.1128/jb.177.15.4303-4310.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen L. C., Benning M. M., Holden H. M. Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase. Biochemistry. 1995 Oct 17;34(41):13305–13311. doi: 10.1021/bi00041a005. [DOI] [PubMed] [Google Scholar]
- Radika K., Northrop D. B. Correlation of antibiotic resistance with Vmax/Km ratio of enzymatic modification of aminoglycosides by kanamycin acetyltransferase. Antimicrob Agents Chemother. 1984 Apr;25(4):479–482. doi: 10.1128/aac.25.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radika K., Northrop D. B. Purification of two forms of kanamycin acetyltransferase from Escherichia coli. Arch Biochem Biophys. 1984 Aug 15;233(1):272–285. doi: 10.1016/0003-9861(84)90626-x. [DOI] [PubMed] [Google Scholar]
- Radika K., Northrop D. B. Substrate specificities and structure-activity relationships for acylation of antibiotics catalyzed by kanamycin acetyltransferase. Biochemistry. 1984 Oct 23;23(22):5118–5122. doi: 10.1021/bi00317a006. [DOI] [PubMed] [Google Scholar]
- Radika K., Northrop D. B. The kinetic mechanism of kanamycin acetyltransferase derived from the use of alternative antibiotics and coenzymes. J Biol Chem. 1984 Oct 25;259(20):12543–12546. [PubMed] [Google Scholar]
- Shaw K. J., Rather P. N., Hare R. S., Miller G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993 Mar;57(1):138–163. doi: 10.1128/mr.57.1.138-163.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siregar J. J., Lerner S. A., Mobashery S. Purification and characterization of aminoglycoside 3'-phosphotransferase type IIa and kinetic comparison with a new mutant enzyme. Antimicrob Agents Chemother. 1994 Apr;38(4):641–647. doi: 10.1128/aac.38.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siregar J. J., Miroshnikov K., Mobashery S. Purification, characterization, and investigation of the mechanism of aminoglycoside 3'-phosphotransferase type Ia. Biochemistry. 1995 Oct 3;34(39):12681–12688. doi: 10.1021/bi00039a026. [DOI] [PubMed] [Google Scholar]
- Spera R. V., Jr, Farber B. F. Multidrug-resistant Enterococcus faecium. An untreatable nosocomial pathogen. Drugs. 1994 Nov;48(5):678–688. doi: 10.2165/00003495-199448050-00003. [DOI] [PubMed] [Google Scholar]
- Spera R. V., Jr, Farber B. F. Multiply-resistant Enterococcus faecium. The nosocomial pathogen of the 1990s. JAMA. 1992 Nov 11;268(18):2563–2564. [PubMed] [Google Scholar]
- Tenover F. C., Filpula D., Phillips K. L., Plorde J. J. Cloning and sequencing of a gene encoding an aminoglycoside 6'-N-acetyltransferase from an R factor of Citrobacter diversus. J Bacteriol. 1988 Jan;170(1):471–473. doi: 10.1128/jb.170.1.471-473.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J. W., Northrop D. B. Kinetic mechanisms of gentamicin acetyltransferase I. Antibiotic-dependent shift from rapid to nonrapid equilibrium random mechanisms. J Biol Chem. 1978 Sep 10;253(17):5902–5907. [PubMed] [Google Scholar]
- Zühlsdorf M. T., Wiedemann B. Functional and physiological characterization of the Tn21 cassette for resistance genes in Tn2426. J Gen Microbiol. 1993 May;139(5):995–1002. doi: 10.1099/00221287-139-5-995. [DOI] [PubMed] [Google Scholar]