Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):965–971. doi: 10.1128/aac.41.5.965

Antiviral properties of palinavir, a potent inhibitor of the human immunodeficiency virus type 1 protease.

D Lamarre 1, G Croteau 1, E Wardrop 1, L Bourgon 1, D Thibeault 1, C Clouette 1, M Vaillancourt 1, E Cohen 1, C Pargellis 1, C Yoakim 1, P C Anderson 1
PMCID: PMC163834  PMID: 9145853

Abstract

Palinavir is a potent inhibitor of the human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) proteases. Replication of laboratory strains (HIV-1, HIV-2, and simian immunodeficiency virus) and HIV-1 clinical isolates is inhibited by palinavir with 50% effective concentrations ranging from 0.5 to 30 nM. The average cytotoxic concentration of palinavir (35 microM) in the various target cells indicates a favorable therapeutic index. Potent antiviral activity is retained with increased doses of virus and with clinical isolates resistant to zidovudine (AZT), didanosine (ddI), or nevirapine. Combinations of palinavir with either AZT, ddI, or nevirapine demonstrate synergy or additivity in the inhibition of HIV-1 replication. Palinavir retains anti-HIV-1 activity when administered postinfection until times subsequent to the reverse transcription step. In chronically infected CR-10 cells, palinavir blocks Gag precursor polyprotein processing completely, reducing greater than 99% of infectious particle production. The results indicate that the antiviral activity of palinavir is specific to inhibition of the viral protease and occurs at a late stage in the replicative cycle of HIV-1. On the basis of the potent in vitro activity, low-level cytotoxicity, and other data, palinavir was selected for in-depth preclinical evaluation.

Full Text

The Full Text of this article is available as a PDF (531.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechtold C. M., Patick A. K., Alam M., Greytok J., Tino J. A., Chen P., Gordon E., Ahmad S., Barrish J. C., Zahler R. Antiviral properties of aminodiol inhibitors against human immunodeficiency virus and protease. Antimicrob Agents Chemother. 1995 Feb;39(2):374–379. doi: 10.1128/aac.39.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betageri R., Hopkins J. L., Thibeault D., Emmanuel M. J., Chow G. C., Skoog M. T., de Dreu P., Cohen K. A. Rapid, sensitive and efficient HPLC assays for HIV-1 proteinase. J Biochem Biophys Methods. 1993 Oct;27(3):191–197. doi: 10.1016/0165-022x(93)90003-7. [DOI] [PubMed] [Google Scholar]
  3. Bilello J. A., Bilello P. A., Prichard M., Robins T., Drusano G. L. Reduction of the in vitro activity of A77003, an inhibitor of human immunodeficiency virus protease, by human serum alpha 1 acid glycoprotein. J Infect Dis. 1995 Mar;171(3):546–551. doi: 10.1093/infdis/171.3.546. [DOI] [PubMed] [Google Scholar]
  4. Bilello J. A., Bilello P. A., Stellrecht K., Leonard J., Norbeck D. W., Kempf D. J., Robins T., Drusano G. L. Human serum alpha 1 acid glycoprotein reduces uptake, intracellular concentration, and antiviral activity of A-80987, an inhibitor of the human immunodeficiency virus type 1 protease. Antimicrob Agents Chemother. 1996 Jun;40(6):1491–1497. doi: 10.1128/aac.40.6.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billich A., Fricker G., Müller I., Donatsch P., Ettmayer P., Gstach H., Lehr P., Peichl P., Scholz D., Rosenwirth B. SDZ PRI 053, an orally bioavailable human immunodeficiency virus type 1 proteinase inhibitor containing the 2-aminobenzylstatine moiety. Antimicrob Agents Chemother. 1995 Jul;39(7):1406–1413. doi: 10.1128/aac.39.7.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryant M., Getman D., Smidt M., Marr J., Clare M., Dillard R., Lansky D., DeCrescenzo G., Heintz R., Houseman K. SC-52151, a novel inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother. 1995 Oct;39(10):2229–2234. doi: 10.1128/aac.39.10.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chokekijchai S., Shirasaka T., Weinstein J. N., Mitsuya H. In vitro anti-HIV-1 activity of HIV protease inhibitor KNI-272 in resting and activated cells: implications for its combined use with AZT or ddI. Antiviral Res. 1995 Sep;28(1):25–38. doi: 10.1016/0166-3542(95)00036-l. [DOI] [PubMed] [Google Scholar]
  8. Chou T. C., Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55. doi: 10.1016/0065-2571(84)90007-4. [DOI] [PubMed] [Google Scholar]
  9. Condra J. H., Schleif W. A., Blahy O. M., Gabryelski L. J., Graham D. J., Quintero J. C., Rhodes A., Robbins H. L., Roth E., Shivaprakash M. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature. 1995 Apr 6;374(6522):569–571. doi: 10.1038/374569a0. [DOI] [PubMed] [Google Scholar]
  10. Croteau G., Doyon L., Thibeault D., McKercher G., Pilote L., Lamarre D. Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. J Virol. 1997 Feb;71(2):1089–1096. doi: 10.1128/jvi.71.2.1089-1096.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Daniel M. D., Letvin N. L., King N. W., Kannagi M., Sehgal P. K., Hunt R. D., Kanki P. J., Essex M., Desrosiers R. C. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985 Jun 7;228(4704):1201–1204. doi: 10.1126/science.3159089. [DOI] [PubMed] [Google Scholar]
  12. Danner S. A., Carr A., Leonard J. M., Lehman L. M., Gudiol F., Gonzales J., Raventos A., Rubio R., Bouza E., Pintado V. A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. European-Australian Collaborative Ritonavir Study Group. N Engl J Med. 1995 Dec 7;333(23):1528–1533. doi: 10.1056/NEJM199512073332303. [DOI] [PubMed] [Google Scholar]
  13. Darke P. L., Huff J. R. HIV protease as an inhibitor target for the treatment of AIDS. Adv Pharmacol. 1994;25:399–454. doi: 10.1016/s1054-3589(08)60438-x. [DOI] [PubMed] [Google Scholar]
  14. Debouck C. The HIV-1 protease as a therapeutic target for AIDS. AIDS Res Hum Retroviruses. 1992 Feb;8(2):153–164. doi: 10.1089/aid.1992.8.153. [DOI] [PubMed] [Google Scholar]
  15. Doyon L., Croteau G., Thibeault D., Poulin F., Pilote L., Lamarre D. Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J Virol. 1996 Jun;70(6):3763–3769. doi: 10.1128/jvi.70.6.3763-3769.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Folks T. M., Justement J., Kinter A., Dinarello C. A., Fauci A. S. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science. 1987 Nov 6;238(4828):800–802. doi: 10.1126/science.3313729. [DOI] [PubMed] [Google Scholar]
  17. Geleziunas R., Arts E. J., Boulerice F., Goldman H., Wainberg M. A. Effect of 3'-azido-3'-deoxythymidine on human immunodeficiency virus type 1 replication in human fetal brain macrophages. Antimicrob Agents Chemother. 1993 Jun;37(6):1305–1312. doi: 10.1128/aac.37.6.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gendelman H. E., Orenstein J. M., Baca L. M., Weiser B., Burger H., Kalter D. C., Meltzer M. S. The macrophage in the persistence and pathogenesis of HIV infection. AIDS. 1989 Aug;3(8):475–495. doi: 10.1097/00002030-198908000-00001. [DOI] [PubMed] [Google Scholar]
  19. Gendelman H. E., Orenstein J. M., Martin M. A., Ferrua C., Mitra R., Phipps T., Wahl L. A., Lane H. C., Fauci A. S., Burke D. S. Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med. 1988 Apr 1;167(4):1428–1441. doi: 10.1084/jem.167.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hirsch M. S., D'Aquila R. T. Therapy for human immunodeficiency virus infection. N Engl J Med. 1993 Jun 10;328(23):1686–1695. doi: 10.1056/NEJM199306103282307. [DOI] [PubMed] [Google Scholar]
  21. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  22. Kempf D. J., Marsh K. C., Denissen J. F., McDonald E., Vasavanonda S., Flentge C. A., Green B. E., Fino L., Park C. H., Kong X. P. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2484–2488. doi: 10.1073/pnas.92.7.2484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kitchen V. S., Skinner C., Ariyoshi K., Lane E. A., Duncan I. B., Burckhardt J., Burger H. U., Bragman K., Pinching A. J., Weber J. N. Safety and activity of saquinavir in HIV infection. Lancet. 1995 Apr 15;345(8955):952–955. doi: 10.1016/s0140-6736(95)90699-1. [DOI] [PubMed] [Google Scholar]
  24. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lam P. Y., Jadhav P. K., Eyermann C. J., Hodge C. N., Ru Y., Bacheler L. T., Meek J. L., Otto M. J., Rayner M. M., Wong Y. N. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science. 1994 Jan 21;263(5145):380–384. doi: 10.1126/science.8278812. [DOI] [PubMed] [Google Scholar]
  26. Larder B. A., Darby G., Richman D. D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989 Mar 31;243(4899):1731–1734. doi: 10.1126/science.2467383. [DOI] [PubMed] [Google Scholar]
  27. Markowitz M., Saag M., Powderly W. G., Hurley A. M., Hsu A., Valdes J. M., Henry D., Sattler F., La Marca A., Leonard J. M. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N Engl J Med. 1995 Dec 7;333(23):1534–1539. doi: 10.1056/NEJM199512073332204. [DOI] [PubMed] [Google Scholar]
  28. Molla A., Korneyeva M., Gao Q., Vasavanonda S., Schipper P. J., Mo H. M., Markowitz M., Chernyavskiy T., Niu P., Lyons N. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med. 1996 Jul;2(7):760–766. doi: 10.1038/nm0796-760. [DOI] [PubMed] [Google Scholar]
  29. Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
  30. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  31. Moyle G., Gazzard B. Current knowledge and future prospects for the use of HIV protease inhibitors. Drugs. 1996 May;51(5):701–712. doi: 10.2165/00003495-199651050-00001. [DOI] [PubMed] [Google Scholar]
  32. Naidu Y. M., Kestler H. W., 3rd, Li Y., Butler C. V., Silva D. P., Schmidt D. K., Troup C. D., Sehgal P. K., Sonigo P., Daniel M. D. Characterization of infectious molecular clones of simian immunodeficiency virus (SIVmac) and human immunodeficiency virus type 2: persistent infection of rhesus monkeys with molecularly cloned SIVmac. J Virol. 1988 Dec;62(12):4691–4696. doi: 10.1128/jvi.62.12.4691-4696.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Noble S., Faulds D. Saquinavir. A review of its pharmacology and clinical potential in the management of HIV infection. Drugs. 1996 Jul;52(1):93–112. doi: 10.2165/00003495-199652010-00007. [DOI] [PubMed] [Google Scholar]
  34. Pargellis C. A., Morelock M. M., Graham E. T., Kinkade P., Pav S., Lubbe K., Lamarre D., Anderson P. C. Determination of kinetic rate constants for the binding of inhibitors to HIV-1 protease and for the association and dissociation of active homodimer. Biochemistry. 1994 Oct 18;33(41):12527–12534. doi: 10.1021/bi00207a021. [DOI] [PubMed] [Google Scholar]
  35. Pav S., Lubbe K., Dô F., Lamarre D., Pargellis C., Tong L. Microtube batch protein crystallization: applications to human immunodeficiency virus type 2 (HIV-2) protease and human renin. Proteins. 1994 Sep;20(1):98–102. doi: 10.1002/prot.340200110. [DOI] [PubMed] [Google Scholar]
  36. Popovic M., Read-Connole E., Gallo R. C. T4 positive human neoplastic cell lines susceptible to and permissive for HTLV-III. Lancet. 1984 Dec 22;2(8417-8418):1472–1473. doi: 10.1016/s0140-6736(84)91666-0. [DOI] [PubMed] [Google Scholar]
  37. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
  38. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  39. Richman D., Shih C. K., Lowy I., Rose J., Prodanovich P., Goff S., Griffin J. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11241–11245. doi: 10.1073/pnas.88.24.11241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Roberts N. A., Martin J. A., Kinchington D., Broadhurst A. V., Craig J. C., Duncan I. B., Galpin S. A., Handa B. K., Kay J., Kröhn A. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990 Apr 20;248(4953):358–361. doi: 10.1126/science.2183354. [DOI] [PubMed] [Google Scholar]
  41. Shaw G. M., Hahn B. H., Arya S. K., Groopman J. E., Gallo R. C., Wong-Staal F. Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science. 1984 Dec 7;226(4679):1165–1171. doi: 10.1126/science.6095449. [DOI] [PubMed] [Google Scholar]
  42. Tong L., Pav S., Mui S., Lamarre D., Yoakim C., Beaulieu P., Anderson P. C. Crystal structures of HIV-2 protease in complex with inhibitors containing the hydroxyethylamine dipeptide isostere. Structure. 1995 Jan 15;3(1):33–40. doi: 10.1016/s0969-2126(01)00133-2. [DOI] [PubMed] [Google Scholar]
  43. Vacca J. P., Dorsey B. D., Schleif W. A., Levin R. B., McDaniel S. L., Darke P. L., Zugay J., Quintero J. C., Blahy O. M., Roth E. L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4096–4100. doi: 10.1073/pnas.91.9.4096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  45. Wlodawer A., Erickson J. W. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–585. doi: 10.1146/annurev.bi.62.070193.002551. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES