Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):972–976. doi: 10.1128/aac.41.5.972

Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents.

D Sereno 1, J L Lemesre 1
PMCID: PMC163835  PMID: 9145854

Abstract

Using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide microassay, previously described as a means of quantifying Leishmania amazonensis in vitro at the amastigote stage (D. Sereno and J. L. Lemesre, Parisitol. Res., in press), we have compared the activities of seven drugs, including those currently used to treat leishmaniasis, against axenically grown amastigote and promastigote forms of three Leishmania species (L. amazonensis, L. mexicana, and L. infantum, responsible for diffuse cutaneous, cutaneous, and visceral leishmaniasis, respectively). The ability of axenically cultured amastigote organisms to be used in an investigation of antileishmanial agents was first evaluated. We have confirmed the toxicities of sodium stibogluconate (Pentostam), pentamidine, and amphotericin B to active and dividing populations of axenically cultured amastigotes. The toxicity of potassium antimonyl tartrate trihydrate, which is generally higher than that of Pentostam, seemed to indicate that pentavalent antimony can be metabolized in vivo to compounds, possibly trivalent in nature, which are more active against the amastigote organisms. When the drug susceptibilities of parasites at both stages were compared, great variations were found for all the drugs studied. These major differences, which show the specific chemosusceptibility of the parasite at the mammalian stage, demonstrate the potential of using cultured amastigotes instead of promastigotes in a drug-screening procedure for early detection. This in vitro model may help in the isolation of active compounds, particularly those with low-grade activities, against the mammalian stage of the parasite.

Full Text

The Full Text of this article is available as a PDF (191.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson A. J., Jr, Bennett J. E. Amphotericin B pharmacokinetics in humans. Antimicrob Agents Chemother. 1978 Feb;13(2):271–276. doi: 10.1128/aac.13.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basselin M., Lawrence F., Robert-Gero M. Pentamidine uptake in Leishmania donovani and Leishmania amazonensis promastigotes and axenic amastigotes. Biochem J. 1996 Apr 15;315(Pt 2):631–634. doi: 10.1042/bj3150631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bates P. A. Axenic culture of Leishmania amastigotes. Parasitol Today. 1993 Apr;9(4):143–146. doi: 10.1016/0169-4758(93)90181-e. [DOI] [PubMed] [Google Scholar]
  4. Bates P. A., Robertson C. D., Tetley L., Coombs G. H. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology. 1992 Oct;105(Pt 2):193–202. doi: 10.1017/s0031182000074102. [DOI] [PubMed] [Google Scholar]
  5. Berman J. D. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies. Rev Infect Dis. 1988 May-Jun;10(3):560–586. doi: 10.1093/clinids/10.3.560. [DOI] [PubMed] [Google Scholar]
  6. Berman J. D., Gallalee J. V., Best J. M. Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway, and fatty acid beta-oxidation in Leishmania mexicana amastigotes. Biochem Pharmacol. 1987 Jan 15;36(2):197–201. doi: 10.1016/0006-2952(87)90689-7. [DOI] [PubMed] [Google Scholar]
  7. Berman J. D., Gallalee J. V., Hansen B. D. Leishmania mexicana: uptake of sodium stibogluconate (Pentostam) and pentamidine by parasite and macrophages. Exp Parasitol. 1987 Aug;64(1):127–131. doi: 10.1016/0014-4894(87)90018-x. [DOI] [PubMed] [Google Scholar]
  8. Berman J. D., Gallalee J. V. Semiautomated assessment of in vitro activity of potential antileishmanial drugs. Antimicrob Agents Chemother. 1985 Dec;28(6):723–726. doi: 10.1128/aac.28.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berman J. D., Waddell D., Hanson B. D. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrob Agents Chemother. 1985 Jun;27(6):916–920. doi: 10.1128/aac.27.6.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berman J. D., Wyler D. J. An in vitro model for investigation of chemotherapeutic agents in leishmaniasis. J Infect Dis. 1980 Jul;142(1):83–86. doi: 10.1093/infdis/142.1.83. [DOI] [PubMed] [Google Scholar]
  11. Coombs G. H., Craft J. A., Hart D. T. A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Mol Biochem Parasitol. 1982 Mar;5(3):199–211. doi: 10.1016/0166-6851(82)90021-4. [DOI] [PubMed] [Google Scholar]
  12. Gebre-Hiwot A., Tadesse G., Croft S. L., Frommel D. An in vitro model for screening antileishmanial drugs: the human leukaemia monocyte cell line, THP-1. Acta Trop. 1992 Aug;51(3-4):237–245. doi: 10.1016/0001-706x(92)90042-v. [DOI] [PubMed] [Google Scholar]
  13. Goodwin L. G. Pentostam (sodium stibogluconate); a 50-year personal reminiscence. Trans R Soc Trop Med Hyg. 1995 May-Jun;89(3):339–341. doi: 10.1016/0035-9203(95)90572-3. [DOI] [PubMed] [Google Scholar]
  14. Grogl M., Thomason T. N., Franke E. D. Drug resistance in leishmaniasis: its implication in systemic chemotherapy of cutaneous and mucocutaneous disease. Am J Trop Med Hyg. 1992 Jul;47(1):117–126. doi: 10.4269/ajtmh.1992.47.117. [DOI] [PubMed] [Google Scholar]
  15. Haidaris C. G., Bonventre P. F. Efficacy of combined immunostimulation and chemotherapy in experimental visceral Leishmaniasis. Am J Trop Med Hyg. 1983 Mar;32(2):286–295. doi: 10.4269/ajtmh.1983.32.286. [DOI] [PubMed] [Google Scholar]
  16. Huber W., Koella J. C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop. 1993 Dec;55(4):257–261. doi: 10.1016/0001-706x(93)90083-n. [DOI] [PubMed] [Google Scholar]
  17. Lamy L., Wonde T., Lamy H. Activité de l'amphotéricine B sur Leishmania donovani en multiplication dans des macrophages de souris entrenus in vitro. Bull Soc Pathol Exot Filiales. 1966 Nov-Dec;59(6):964–968. [PubMed] [Google Scholar]
  18. Mattock N. M., Peters W. The experimental chemotherapy of leishmaniasis. II. The activity in tissue culture of some antiparasitic and antimicrobial compounds in clinical use. Ann Trop Med Parasitol. 1975 Sep;69(3):359–371. [PubMed] [Google Scholar]
  19. Moreira E. S., Soares R. M., Petrillo-Peixoto M. de L. Glucantime susceptibility of Leishmania promastigotes under variable growth conditions. Parasitol Res. 1995;81(4):291–295. doi: 10.1007/BF00931532. [DOI] [PubMed] [Google Scholar]
  20. Mottram J. C., Coombs G. H. Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol. 1985 Apr;59(2):151–160. doi: 10.1016/0014-4894(85)90067-0. [DOI] [PubMed] [Google Scholar]
  21. Neal R. A., Croft S. L. An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. J Antimicrob Chemother. 1984 Nov;14(5):463–475. doi: 10.1093/jac/14.5.463. [DOI] [PubMed] [Google Scholar]
  22. Peters B. S., Fish D., Golden R., Evans D. A., Bryceson A. D., Pinching A. J. Visceral leishmaniasis in HIV infection and AIDS: clinical features and response to therapy. Q J Med. 1990 Nov;77(283):1101–1111. doi: 10.1093/qjmed/77.2.1101. [DOI] [PubMed] [Google Scholar]
  23. Rainey P. M., Spithill T. W., McMahon-Pratt D., Pan A. A. Biochemical and molecular characterization of Leishmania pifanoi amastigotes in continuous axenic culture. Mol Biochem Parasitol. 1991 Nov;49(1):111–118. doi: 10.1016/0166-6851(91)90134-r. [DOI] [PubMed] [Google Scholar]
  24. Rees P. H., Keating M. I., Kager P. A., Hockmeyer W. T. Renal clearance of pentavalent antimony (sodium stibogluconate). Lancet. 1980 Aug 2;2(8188):226–229. doi: 10.1016/s0140-6736(80)90120-8. [DOI] [PubMed] [Google Scholar]
  25. Roberts W. L., Berman J. D., Rainey P. M. In vitro antileishmanial properties of tri- and pentavalent antimonial preparations. Antimicrob Agents Chemother. 1995 Jun;39(6):1234–1239. doi: 10.1128/aac.39.6.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts W. L., Rainey P. M. Antileishmanial activity of sodium stibogluconate fractions. Antimicrob Agents Chemother. 1993 Sep;37(9):1842–1846. doi: 10.1128/aac.37.9.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roberts W. L., Rainey P. M. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy. Anal Biochem. 1993 May 15;211(1):1–6. doi: 10.1006/abio.1993.1223. [DOI] [PubMed] [Google Scholar]
  28. Waalkes T. P., DeVita V. T. he determination of pentamidine (4,4'-diamidinophenoxypentane) in plasma, urine, and tissues. J Lab Clin Med. 1970 May;75(5):871–878. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES