Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):987–991. doi: 10.1128/aac.41.5.987

Kinetics of piperacillin and tazobactam in ventricular cerebrospinal fluid of hydrocephalic patients.

R Nau 1, M Kinzig-Schippers 1, F Sörgel 1, S Schinschke 1, R Rössing 1, C Müller 1, H Kolenda 1, H W Prange 1
PMCID: PMC163838  PMID: 9145857

Abstract

Its broad antibacterial spectrum qualifies the combination of piperacillin and tazobactam for therapy of nosocomial bacterial central nervous system (CNS) infections. Since these infections sometimes are accompanied by only minor dysfunction of the blood-cerebrospinal fluid (CSF) barrier, patients with noninflammatory occlusive hydrocephalus who had undergone external ventriculostomy were studied (n = 9; age range, 48 to 75 years). After administration of the first dose of piperacillin (6 g)-tazobactam (0.5 g) over 30 min intravenously, serum and CSF were drawn repeatedly and analyzed by high-performance liquid chromatography. Pharmacokinetics were determined by noncompartmental analysis. Maximum concentrations of piperacillin in CSF ranged from 8.67 to <0.37 mg/liter (median, 3.42 mg/liter), and those of tazobactam ranged from 1.37 to 0.11 mg/liter (median, 0.45 mg/liter). CSF maxima were observed, in median, 1.5 and 2 h after the end of the infusion. Elimination in CSF was considerably slower than in serum (median half-life at beta phase for piperacillin, 5.9 h in CSF versus 1.47 h in serum; for tazobactam, 6.1 h versus 1.34 h). For tazobactam, the ratio of the area under the concentration-time curve (AUC) in CSF to the AUC in serum was approximately three times as high as that for piperacillin (medians, 0.106 versus 0.034). In view of the tazobactam concentrations in CSF observed in this study, the practice of using a constant concentration of 4 mg of tazobactam per liter for MIC determination is inadequate for intracranial infections. Larger amounts of tazobactam than the standard dose of 0.5 g three times daily may be necessary for CNS infections.

Full Text

The Full Text of this article is available as a PDF (237.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaney S. M., Daniel M. J., Harker A. J., Godwin K., Balis F. M. Pharmacokinetics of lamivudine and BCH-189 in plasma and cerebrospinal fluid of nonhuman primates. Antimicrob Agents Chemother. 1995 Dec;39(12):2779–2782. doi: 10.1128/aac.39.12.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cabellos C., Martinez-Lacasa J., Martos A., Tubau F., Fernández A., Viladrich P. F., Gudiol F. Influence of dexamethasone on efficacy of ceftriaxone and vancomycin therapy in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 1995 Sep;39(9):2158–2160. doi: 10.1128/aac.39.9.2158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Decazes J. M., Meulemans A., Bure A., Laisne M. J., Modai J. Pénétration de la pipéracilline dans le liquide céphalo-rachidien des malades atteints de méningite purulente. Presse Med. 1984 Feb 11;13(5):261–264. [PubMed] [Google Scholar]
  4. Dickinson G. M., Droller D. G., Greenman R. L., Hoffman T. A. Clinical evaluation of piperacillin with observations on penetrability into cerebrospinal fluid. Antimicrob Agents Chemother. 1981 Oct;20(4):481–486. doi: 10.1128/aac.20.4.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FISHMAN R. A., RANSOHOFF J., OSSERMAN E. F. Factors influencing the concentration gradient of protein in cerebrospinal fluid. J Clin Invest. 1958 Oct;37(10):1419–1424. doi: 10.1172/JCI103732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holmes B., Richards D. M., Brogden R. N., Heel R. C. Piperacillin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1984 Nov;28(5):375–425. doi: 10.2165/00003495-198428050-00002. [DOI] [PubMed] [Google Scholar]
  7. Incavo S. J., Ronchetti P. J., Choi J. H., Wu H., Kinzig M., Sörgel F. Penetration of piperacillin-tazobactam into cancellous and cortical bone tissues. Antimicrob Agents Chemother. 1994 Apr;38(4):905–907. doi: 10.1128/aac.38.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jehl F., Muller-Serieys C., de Larminat V., Monteil H., Bergogne-Berezin E. Penetration of piperacillin-tazobactam into bronchial secretions after multiple doses to intensive care patients. Antimicrob Agents Chemother. 1994 Dec;38(12):2780–2784. doi: 10.1128/aac.38.12.2780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kern W., Kennedy S. L., Sachdeva M., Sande E. R., Gunderson D., Täuber M. G. Evaluation of piperacillin-tazobactam in experimental meningitis caused by a beta-lactamase-producing strain of K1-positive Escherichia coli. Antimicrob Agents Chemother. 1990 May;34(5):697–701. doi: 10.1128/aac.34.5.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kinzig M., Sörgel F., Brismar B., Nord C. E. Pharmacokinetics and tissue penetration of tazobactam and piperacillin in patients undergoing colorectal surgery. Antimicrob Agents Chemother. 1992 Sep;36(9):1997–2004. doi: 10.1128/aac.36.9.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leleu G., Kitzis M. D., Vallois J. M., Gutmann L., Decazes J. M. Different ratios of the piperacillin-tazobactam combination for treatment of experimental meningitis due to Klebsiella pneumoniae producing the TEM-3 extended-spectrum beta-lactamase. Antimicrob Agents Chemother. 1994 Feb;38(2):195–199. doi: 10.1128/aac.38.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Livermore D. M., Seetulsingh P. Susceptibility of Escherichia coli isolates with TEM-1 beta-lactamase to combinations of BRL42715, tazobactam or clavulanate with piperacillin or amoxycillin . J Antimicrob Chemother. 1991 Jun;27(6):761–767. doi: 10.1093/jac/27.6.761. [DOI] [PubMed] [Google Scholar]
  13. Moore C. M., Ross M. Acute bacterial meningitis with absent or minimal cerebrospinal fluid abnormalities. A report of three cases. Clin Pediatr (Phila) 1973 Feb;12(2):117–118. doi: 10.1177/000992287301200216. [DOI] [PubMed] [Google Scholar]
  14. Nau R., Dreyhaupt T., Kolenda H., Prange H. W. Low blood-to-cerebrospinal fluid passage of sorbitol after intravenous infusion. Stroke. 1992 Sep;23(9):1276–1279. doi: 10.1161/01.str.23.9.1276. [DOI] [PubMed] [Google Scholar]
  15. Nau R., Prange H. W. Estimation of steady state antibiotic concentration in cerebrospinal fluid from single-dose kinetics. Eur J Clin Pharmacol. 1996;49(5):407–409. doi: 10.1007/BF00203787. [DOI] [PubMed] [Google Scholar]
  16. Nau R., Prange H. W., Kinzig M., Frank A., Dressel A., Scholz P., Kolenda H., Sörgel F. Cerebrospinal fluid ceftazidime kinetics in patients with external ventriculostomies. Antimicrob Agents Chemother. 1996 Mar;40(3):763–766. doi: 10.1128/aac.40.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nau R., Prange H. W., Muth P., Mahr G., Menck S., Kolenda H., Sörgel F. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother. 1993 Jul;37(7):1518–1524. doi: 10.1128/aac.37.7.1518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nau R., Prins F. J., Kolenda H., Prange H. W. Temporary reversal of serum to cerebrospinal fluid glycerol concentration gradient after intravenous infusion of glycerol. Eur J Clin Pharmacol. 1992;42(2):181–185. doi: 10.1007/BF00278481. [DOI] [PubMed] [Google Scholar]
  19. Nau R., Schmidt T., Kaye K., Froula J. L., Täuber M. G. Quinolone antibiotics in therapy of experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother. 1995 Mar;39(3):593–597. doi: 10.1128/AAC.39.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nau R., Sörgel F., Prange H. W. Lipophilicity at pH 7.4 and molecular size govern the entry of the free serum fraction of drugs into the cerebrospinal fluid in humans with uninflamed meninges. J Neurol Sci. 1994 Mar;122(1):61–65. doi: 10.1016/0022-510x(94)90052-3. [DOI] [PubMed] [Google Scholar]
  21. Tunkel A. R., Wispelwey B., Scheld W. M. Bacterial meningitis: recent advances in pathophysiology and treatment. Ann Intern Med. 1990 Apr 15;112(8):610–623. doi: 10.7326/0003-4819-112-8-610. [DOI] [PubMed] [Google Scholar]
  22. Täuber M. G., Doroshow C. A., Hackbarth C. J., Rusnak M. G., Drake T. A., Sande M. A. Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J Infect Dis. 1984 Apr;149(4):568–574. doi: 10.1093/infdis/149.4.568. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES