Abstract
In order to inhibit the growth of bacteria present in the human oral cavity, a novel system which targets antimicrobial agents to dental plaque has been developed. This system involves a hybrid protein consisting of a peptide expressing the bactericidal properties of galactose oxidase (GAO) fused to the glucan binding domain (GBD) of the Streptococcus mutans glucosyltransferase-S enzyme. A gene encoding GAO from the fungus Fusarium sp. has been inserted into an Escherichia coli expression vector and fused to sequences encoding the GBD, which binds to the glucans synthesized by oral streptococci. Bacterial extracts expressing the hybrid protein were tested for their ability to target the GAO activity to an in vitro plaque model consisting of streptococcal cells bound to microtiter plate wells. The binding of the hybrid protein to the streptococcal cells through its GBD and the dependence of binding on the production of glucans by bacteria were demonstrated. Furthermore, killing of three different species of oral streptococci by bound hybrid protein in conjunction with the galactose-lactoperoxidase-iodide cytotoxic system has been demonstrated. These results suggest a novel strategy for controlling dental plaque formation as well as dental caries in humans.
Full Text
The Full Text of this article is available as a PDF (498.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baron A. J., Stevens C., Wilmot C., Seneviratne K. D., Blakeley V., Dooley D. M., Phillips S. E., Knowles P. F., McPherson M. J. Structure and mechanism of galactose oxidase. The free radical site. J Biol Chem. 1994 Oct 7;269(40):25095–25105. [PubMed] [Google Scholar]
- Caufield P. W., Gibbons R. J. Suppression of Streptococcus mutans in the mouths of humans by a dental prophylaxis and topically-applied iodine. J Dent Res. 1979 Apr;58(4):1317–1326. doi: 10.1177/00220345790580040301. [DOI] [PubMed] [Google Scholar]
- Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanada N., Kuramitsu H. K. Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun. 1989 Jul;57(7):2079–2085. doi: 10.1128/iai.57.7.2079-2085.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honda O., Kato C., Kuramitsu H. K. Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J Gen Microbiol. 1990 Oct;136(10):2099–2105. doi: 10.1099/00221287-136-10-2099. [DOI] [PubMed] [Google Scholar]
- Kato C., Nakano Y., Lis M., Kuramitsu H. K. Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1184–1188. doi: 10.1016/0006-291x(92)92329-v. [DOI] [PubMed] [Google Scholar]
- Lis M., Shiroza T., Kuramitsu H. K. Role of C-terminal direct repeating units of the Streptococcus mutans glucosyltransferase-S in glucan binding. Appl Environ Microbiol. 1995 May;61(5):2040–2042. doi: 10.1128/aem.61.5.2040-2042.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majerus P. M., Courtois P. A. Susceptibility of Candida albicans to peroxidase-catalyzed oxidation products of thiocyanate, iodide and bromide. J Biol Buccale. 1992 Dec;20(4):241–245. [PubMed] [Google Scholar]
- McFaul S. J., Lin H., Everse J. The mechanism of peroxidase-mediated cytotoxicity. I. Comparison of horseradish peroxidase and lactoperoxidase. Proc Soc Exp Biol Med. 1986 Nov;183(2):244–249. doi: 10.3181/00379727-183-42413. [DOI] [PubMed] [Google Scholar]
- McPherson M. J., Ogel Z. B., Stevens C., Yadav K. D., Keen J. N., Knowles P. F. Galactose oxidase of Dactylium dendroides. Gene cloning and sequence analysis. J Biol Chem. 1992 Apr 25;267(12):8146–8152. [PubMed] [Google Scholar]
- McPherson M. J., Stevens C., Baron A. J., Ogel Z. B., Seneviratne K., Wilmot C., Ito N., Brocklebank I., Phillips S. E., Knowles P. F. Galactose oxidase: molecular analysis and mutagenesis studies. Biochem Soc Trans. 1993 Aug;21(3):752–756. doi: 10.1042/bst0210752. [DOI] [PubMed] [Google Scholar]
- Mooser G., Wong C. Isolation of a glucan-binding domain of glucosyltransferase (1,6-alpha-glucan synthase) from Streptococcus sobrinus. Infect Immun. 1988 Apr;56(4):880–884. doi: 10.1128/iai.56.4.880-884.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiroza T., Kuramitsu H. K. Development of a heterodimer plasmid system for the introduction of heterologous genes into streptococci. Plasmid. 1995 Sep;34(2):85–95. doi: 10.1006/plas.1995.9998. [DOI] [PubMed] [Google Scholar]
- Tressel P. S., Kosman D. J. Galactose oxidase from Dactylium dendroides. Methods Enzymol. 1982;89(Pt 500):163–171. doi: 10.1016/s0076-6879(82)89029-0. [DOI] [PubMed] [Google Scholar]
- Wong C., Hefta S. A., Paxton R. J., Shively J. E., Mooser G. Size and subdomain architecture of the glucan-binding domain of sucrose:3-alpha-D-glucosyltransferase from Streptococcus sobrinus. Infect Immun. 1990 Jul;58(7):2165–2170. doi: 10.1128/iai.58.7.2165-2170.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Eichel-Streiber C., Sauerborn M., Kuramitsu H. K. Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol. 1992 Oct;174(20):6707–6710. doi: 10.1128/jb.174.20.6707-6710.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]