Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):1004–1009. doi: 10.1128/aac.41.5.1004

Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium.

L Collins 1, S G Franzblau 1
PMCID: PMC163841  PMID: 9145860

Abstract

In response to the need for rapid, inexpensive, high-throughput assays for antimycobacterial drug screening, a microplate-based assay which uses Alamar blue reagent for determination of growth was evaluated. MICs of 30 antimicrobial agents against Mycobacterium tuberculosis H37Rv, M. tuberculosis H37Ra, and Mycobacterium avium were determined in the microplate Alamar blue assay (MABA) with both visual and fluorometric readings and compared to MICs determined in the BACTEC 460 system. For all three mycobacterial strains, there was < or = 1 dilution difference between MABA and BACTEC median MICs in four replicate experiments for 25 to 27 of the 30 antimicrobics. Significant differences between MABA and BACTEC MICs were observed with 0, 2, and 5 of 30 antimicrobial agents against H37Rv, H37Ra, and M. avium, respectively. Overall, MICs determined either visually or fluorometrically in MABA were highly correlated with those determined in the BACTEC 460 system, and visual MABA and fluorometric MABA MICs were highly correlated. MICs of rifampin, rifabutin, minocycline, and clarithromycin were consistently lower for H37Ra compared to H37Rv in all assays but were similar for most other drugs. M. tuberculosis H37Ra may be a suitable surrogate for the more virulent H37Rv strain in primary screening of compounds for antituberculosis activity. MABA is sensitive, rapid, inexpensive, and nonradiometric and offers the potential for screening, with or without analytical instrumentation, large numbers of antimicrobial compounds against slow-growing mycobacteria.

Full Text

The Full Text of this article is available as a PDF (254.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. A., Gogal R. M., Jr, Walsh J. E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods. 1994 Apr 15;170(2):211–224. doi: 10.1016/0022-1759(94)90396-4. [DOI] [PubMed] [Google Scholar]
  2. Arain T. M., Resconi A. E., Hickey M. J., Stover C. K. Bioluminescence screening in vitro (Bio-Siv) assays for high-volume antimycobacterial drug discovery. Antimicrob Agents Chemother. 1996 Jun;40(6):1536–1541. doi: 10.1128/aac.40.6.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker C. N., Banerjee S. N., Tenover F. C. Evaluation of Alamar colorimetric MIC method for antimicrobial susceptibility testing of gram-negative bacteria. J Clin Microbiol. 1994 May;32(5):1261–1267. doi: 10.1128/jcm.32.5.1261-1267.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chung G. A., Aktar Z., Jackson S., Duncan K. High-throughput screen for detecting antimycobacterial agents. Antimicrob Agents Chemother. 1995 Oct;39(10):2235–2238. doi: 10.1128/aac.39.10.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooksey R. C., Crawford J. T., Jacobs W. R., Jr, Shinnick T. M. A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agents Chemother. 1993 Jun;37(6):1348–1352. doi: 10.1128/aac.37.6.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Griffith M. E., Bodily H. L. Stability of antimycobacterial drugs in susceptibility testing. Antimicrob Agents Chemother. 1992 Nov;36(11):2398–2402. doi: 10.1128/aac.36.11.2398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heifets L. Qualitative and quantitative drug-susceptibility tests in mycobacteriology. Am Rev Respir Dis. 1988 May;137(5):1217–1222. doi: 10.1164/ajrccm/137.5.1217. [DOI] [PubMed] [Google Scholar]
  8. Nilsson L. E., Hoffner S. E., Anséhn S. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP. Antimicrob Agents Chemother. 1988 Aug;32(8):1208–1212. doi: 10.1128/aac.32.8.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Novak S. M., Hindler J., Bruckner D. A. Reliability of two novel methods, Alamar and E test, for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1993 Nov;31(11):3056–3057. doi: 10.1128/jcm.31.11.3056-3057.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pascopella L., Collins F. M., Martin J. M., Jacobs W. R., Jr, Bloom B. R. Identification of a genomic fragment of Mycobacterium tuberculosis responsible for in vivo growth advantage. Infect Agents Dis. 1993 Aug;2(4):282–284. [PubMed] [Google Scholar]
  11. Pfaller M. A., Barry A. L. Evaluation of a novel colorimetric broth microdilution method for antifungal susceptibility testing of yeast isolates. J Clin Microbiol. 1994 Aug;32(8):1992–1996. doi: 10.1128/jcm.32.8.1992-1996.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ryan C., Nguyen B. T., Sullivan S. J. Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop encapsulation. J Clin Microbiol. 1995 Jul;33(7):1720–1726. doi: 10.1128/jcm.33.7.1720-1726.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Siddiqi S. H., Heifets L. B., Cynamon M. H., Hooper N. M., Laszlo A., Libonati J. P., Lindholm-Levy P. J., Pearson N. Rapid broth macrodilution method for determination of MICs for Mycobacterium avium isolates. J Clin Microbiol. 1993 Sep;31(9):2332–2338. doi: 10.1128/jcm.31.9.2332-2338.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tenover F. C., Swenson J. M., O'Hara C. M., Stocker S. A. Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. J Clin Microbiol. 1995 Jun;33(6):1524–1527. doi: 10.1128/jcm.33.6.1524-1527.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tiballi R. N., He X., Zarins L. T., Revankar S. G., Kauffman C. A. Use of a colorimetric system for yeast susceptibility testing. J Clin Microbiol. 1995 Apr;33(4):915–917. doi: 10.1128/jcm.33.4.915-917.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wright E. L., Quenelle D. C., Suling W. J., Barrow W. W. Use of Mono Mac 6 human monocytic cell line and J774 murine macrophage cell line in parallel antimycobacterial drug studies. Antimicrob Agents Chemother. 1996 Sep;40(9):2206–2208. doi: 10.1128/aac.40.9.2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yajko D. M., Madej J. J., Lancaster M. V., Sanders C. A., Cawthon V. L., Gee B., Babst A., Hadley W. K. Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J Clin Microbiol. 1995 Sep;33(9):2324–2327. doi: 10.1128/jcm.33.9.2324-2327.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zabransky R. J., Dinuzzo A. R., Woods G. L. Detection of vancomycin resistance in enterococci by the Alamar MIC system. J Clin Microbiol. 1995 Apr;33(4):791–793. doi: 10.1128/jcm.33.4.791-793.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. de Fries R., Mitsuhashi M. Quantification of mitogen induced human lymphocyte proliferation: comparison of alamarBlue assay to 3H-thymidine incorporation assay. J Clin Lab Anal. 1995;9(2):89–95. doi: 10.1002/jcla.1860090203. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES