Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):1150–1155. doi: 10.1128/aac.41.5.1150

Teicoplanin in cardiac surgery: intraoperative pharmacokinetics and concentrations in cardiac and mediastinal tissues.

C Martin 1, P Bourget 1, M Alaya 1, A Sertin 1, C Atlani 1, K Ennabli 1, R Said 1
PMCID: PMC163868  PMID: 9145887

Abstract

The concentrations of teicoplanin in the sera and mediastinal and heart tissues of 23 patients undergoing cardiac surgery were measured after two regimens of teicoplanin administration. Intraoperative pharmacokinetic parameters were also obtained. Patients were randomized into two groups. Those in group 1 were given teicoplanin at 6 mg x kg(-1) intravenously at the time of induction of anesthesia. Patients in group 2 were given teicoplanin at 12 mg x kg(-1) during the same period. The maximum concentration in serum (71 +/- 20 and 131 +/- 44 mg x l(-1)), the minimum concentration in serum (3.6 +/- 1.3 and 6.8 +/- 2.1 mg x l(-1)), the area under the concentration-time curve (AUC) from 0 to 12 h (108 +/- 20 and 217 +/- 38 microg x h x ml(-1)), and the AUC from 0 h to infinity (154 +/- 36 and 292 +/- 77 microg x h x ml(-1)) were twice as high after 12-mg x kg(-1) injections as after 6-mg x kg(-1) injections. No differences in mean residence time (9.7 +/- 4.9 and 8.4 +/- 2.7 h) or terminal half-life (8.5 +/- 3.8 and 7.5 +/- 2.3 h) were observed. Teicoplanin penetrated mediastinal and heart tissues but not sternal bone, where the antibiotic was detectable in only 1 of 13 patients in group 1 and 2 of 10 patients in group 2. In group 1, 7 of 13 patients had teicoplanin concentrations in tissue that were lower than the MIC for 90% of the strains of potential pathogens tested (MIC90) that cause infection after cardiac surgery. All of the patients in group 2 but one had teicoplanin concentrations in tissue (other than in sternal bone) far in excess of the MIC90 for the potential pathogens. In conclusion, the 12-mg x kg(-1) regimen of teicoplanin is followed by a significant increase in teicoplanin concentrations in heart and mediastinal tissues and should be preferred to the 6-mg x kg(-1) regimen if teicoplanin is selected for antimicrobial prophylaxis in open heart surgery.

Full Text

The Full Text of this article is available as a PDF (251.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannerman T. L., Wadiak D. L., Kloos W. E. Susceptibility of Staphylococcus species and subspecies to teicoplanin. Antimicrob Agents Chemother. 1991 Sep;35(9):1919–1922. doi: 10.1128/aac.35.9.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergamini T. M., Polk H. C., Jr The importance of tissue antibiotic activity in the prevention of operative wound infection. J Antimicrob Chemother. 1989 Mar;23(3):301–313. doi: 10.1093/jac/23.3.301. [DOI] [PubMed] [Google Scholar]
  3. Classen D. C., Evans R. S., Pestotnik S. L., Horn S. D., Menlove R. L., Burke J. P. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992 Jan 30;326(5):281–286. doi: 10.1056/NEJM199201303260501. [DOI] [PubMed] [Google Scholar]
  4. Entenza J. M., Calandra T., Moosmann Y., Malinverni R., Glauser M. P. Teicoplanin versus vancomycin for prophylaxis of experimental Enterococcus faecalis endocarditis in rats. Antimicrob Agents Chemother. 1992 Jun;36(6):1256–1262. doi: 10.1128/aac.36.6.1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gorzynski E. A., Amsterdam D., Beam T. R., Jr, Rotstein C. Comparative in vitro activities of teicoplanin, vancomycin, oxacillin, and other antimicrobial agents against bacteremic isolates of gram-positive cocci. Antimicrob Agents Chemother. 1989 Nov;33(11):2019–2022. doi: 10.1128/aac.33.11.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenberg R. N., Benes C. A. Time-kill studies with oxacillin, vancomycin, and teicoplanin versus Staphylococcus aureus. J Infect Dis. 1990 May;161(5):1036–1037. doi: 10.1093/infdis/161.5.1036. [DOI] [PubMed] [Google Scholar]
  7. Hoddinott C., Lovering A. M., Fernando H. C., Dixon J. H., Reeves D. S. Determination of bone and fat concentrations following systemic cefamandole and regional cefuroxime administration in patients undergoing knee arthroplasty. J Antimicrob Chemother. 1990 Dec;26(6):823–829. doi: 10.1093/jac/26.6.823. [DOI] [PubMed] [Google Scholar]
  8. Jehl F., Monteil H., Tarral A. HPLC quantitation of the six main components of teicoplanin in biological fluids. J Antimicrob Chemother. 1988 Jan;21 (Suppl A):53–59. doi: 10.1093/jac/21.suppl_a.53. [DOI] [PubMed] [Google Scholar]
  9. Klamerus K. J., Rodvold K. A., Silverman N. A., Levitsky S. Effect of cardiopulmonary bypass on vancomycin and netilmicin disposition. Antimicrob Agents Chemother. 1988 May;32(5):631–635. doi: 10.1128/aac.32.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lorian V. Low concentrations of antibiotics. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):15–26. doi: 10.1093/jac/15.suppl_a.15. [DOI] [PubMed] [Google Scholar]
  11. Martin C., Alaya M., Mallet M. N., Viviand X., Ennabli K., Said R., De Micco P. Penetration of vancomycin into mediastinal and cardiac tissues in humans. Antimicrob Agents Chemother. 1994 Feb;38(2):396–399. doi: 10.1128/aac.38.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moreillon P., Francioli P., Overholser D., Meylan P., Glauser M. P. Mechanisms of successful amoxicillin prophylaxis of experimental endocarditis due to Streptococcus intermedius. J Infect Dis. 1986 Nov;154(5):801–807. doi: 10.1093/infdis/154.5.801. [DOI] [PubMed] [Google Scholar]
  13. Mutch D., Richards G., Brown R. A., Mulder D. S. Bioactive antibiotic levels in the human aorta. Surgery. 1982 Dec;92(6):1068–1071. [PubMed] [Google Scholar]
  14. Pitkin D. H., Sachs C., Zajac I., Actor P. Distribution of sodium cefazolin in serum, muscle, bone marrow, and bone of normal rabbits. Antimicrob Agents Chemother. 1977 Apr;11(4):760–762. doi: 10.1128/aac.11.4.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pitt H. A., Roberts R. B., Johnson W. D., Jr Gentamicin levels in the human biliary tract. J Infect Dis. 1973 Mar;127(3):299–302. doi: 10.1093/infdis/127.3.299. [DOI] [PubMed] [Google Scholar]
  16. Stanbridge T. N., Greenall D. J. Netilmicin prophylaxis in open-heart surgery. J Antimicrob Chemother. 1984 Jan;13 (Suppl A):59–65. doi: 10.1093/jac/13.suppl_a.59. [DOI] [PubMed] [Google Scholar]
  17. Stone H. H. Basic principles in the use of prophylactic antibiotics. J Antimicrob Chemother. 1984 Sep;14 (Suppl B):33–37. doi: 10.1093/jac/14.suppl_b.33. [DOI] [PubMed] [Google Scholar]
  18. Wilson A. P., Taylor B., Treasure T., Grüneberg R. N., Patton K., Felmingham D., Sturridge M. F. Antibiotic prophylaxis in cardiac surgery: serum and tissue levels of teicoplanin, flucloxacillin and tobramycin. J Antimicrob Chemother. 1988 Feb;21(2):201–212. doi: 10.1093/jac/21.2.201. [DOI] [PubMed] [Google Scholar]
  19. de Lalla F., Novelli A., Pellizzer G., Milocchi F., Viola R., Rigon A., Stecca C., Dal Pizzol V., Fallani S., Periti P. Regional and systemic prophylaxis with teicoplanin in monolateral and bilateral total knee replacement procedures: study of pharmacokinetics and tissue penetration. Antimicrob Agents Chemother. 1993 Dec;37(12):2693–2698. doi: 10.1128/aac.37.12.2693. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES