Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 May;41(5):1162–1165. doi: 10.1128/aac.41.5.1162

Clinical resistance to erythromycin and clindamycin in cutaneous propionibacteria isolated from acne patients is associated with mutations in 23S rRNA.

J I Ross 1, E A Eady 1, J H Cove 1, C E Jones 1, A H Ratyal 1, Y W Miller 1, S Vyakrnam 1, W J Cunliffe 1
PMCID: PMC163871  PMID: 9145890

Abstract

The genetic basis of erythromycin resistance in cutaneous propionibacteria was determined by comparing the nucleotide sequences of the peptidyl transferase region in the 23S rRNAs from 9 susceptible and 26 resistant clinical isolates as well as 4 laboratory-selected erythromycin-resistant mutants of a susceptible strain. In 13 isolates and the 4 laboratory mutants, cross-resistance to macrolides, lincosamides, and B-type streptogramins was associated with an A-->G transition at a position cognate with Escherichia coli 23S rRNA base 2058. These strains were resistant to > or = 512 microg of erythromycin per ml. Two other mutations were identified, an A-->G transition at base 2059 in seven strains, associated with high-level resistance to all macrolides, and a G-->A transition at base 2057 in six strains, associated with low-level resistance to erythromycin. These mutations correspond to three of four phenotypic classes previously identified by using MIC determinations.

Full Text

The Full Text of this article is available as a PDF (550.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur M., Andremont A., Courvalin P. Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother. 1987 Mar;31(3):404–409. doi: 10.1128/aac.31.3.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crawford W. W., Crawford I. P., Stoughton R. B., Cornell R. C. Laboratory induction and clinical occurrence of combined clindamycin and erythromycin resistance in Corynebacterium acnes. J Invest Dermatol. 1979 Apr;72(4):187–190. doi: 10.1111/1523-1747.ep12676385. [DOI] [PubMed] [Google Scholar]
  3. Dam M., Douthwaite S., Tenson T., Mankin A. S. Mutations in domain II of 23 S rRNA facilitate translation of a 23 S rRNA-encoded pentapeptide conferring erythromycin resistance. J Mol Biol. 1996 May 31;259(1):1–6. doi: 10.1006/jmbi.1996.0296. [DOI] [PubMed] [Google Scholar]
  4. Douthwaite S., Aagaard C. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop. J Mol Biol. 1993 Aug 5;232(3):725–731. doi: 10.1006/jmbi.1993.1426. [DOI] [PubMed] [Google Scholar]
  5. Eady E. A., Cove J. H., Holland K. T., Cunliffe W. J. Erythromycin resistant propionibacteria in antibiotic treated acne patients: association with therapeutic failure. Br J Dermatol. 1989 Jul;121(1):51–57. doi: 10.1111/j.1365-2133.1989.tb01399.x. [DOI] [PubMed] [Google Scholar]
  6. Eady E. A., Ross J. I., Cove J. H., Holland K. T., Cunliffe W. J. Macrolide-lincosamide-streptogramin B (MLS) resistance in cutaneous propionibacteria: definition of phenotypes. J Antimicrob Chemother. 1989 Apr;23(4):493–502. doi: 10.1093/jac/23.4.493. [DOI] [PubMed] [Google Scholar]
  7. Ettayebi M., Prasad S. M., Morgan E. A. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J Bacteriol. 1985 May;162(2):551–557. doi: 10.1128/jb.162.2.551-557.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldsborough A. S., Béranger F. Ligation- and PCR-based method for sequencing plasmid inserts. Biotechniques. 1995 Dec;19(6):910–912. [PubMed] [Google Scholar]
  9. Greisen K., Loeffelholz M., Purohit A., Leong D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol. 1994 Feb;32(2):335–351. doi: 10.1128/jcm.32.2.335-351.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kobayashi I. Mechanisms for gene conversion and homologous recombination: the double-strand break repair model and the successive half crossing-over model. Adv Biophys. 1992;28:81–133. doi: 10.1016/0065-227x(92)90023-k. [DOI] [PubMed] [Google Scholar]
  11. Kurokawa I., Nishijima S., Asada Y. The antibiotic susceptibility of Propionibacterium acnes: a 15-year bacteriological study and retrospective evaluation. J Dermatol. 1988 Apr;15(2):149–154. doi: 10.1111/j.1346-8138.1988.tb03667.x. [DOI] [PubMed] [Google Scholar]
  12. Leyden J. J., McGinley K. J., Cavalieri S., Webster G. F., Mills O. H., Kligman A. M. Propionibacterium acnes resistance to antibiotics in acne patients. J Am Acad Dermatol. 1983 Jan;8(1):41–45. doi: 10.1016/s0190-9622(83)70005-8. [DOI] [PubMed] [Google Scholar]
  13. Lucier T. S., Heitzman K., Liu S. K., Hu P. C. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob Agents Chemother. 1995 Dec;39(12):2770–2773. doi: 10.1128/aac.39.12.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meier A., Kirschner P., Springer B., Steingrube V. A., Brown B. A., Wallace R. J., Jr, Böttger E. C. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother. 1994 Feb;38(2):381–384. doi: 10.1128/aac.38.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nash K. A., Inderlied C. B. Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. Antimicrob Agents Chemother. 1995 Dec;39(12):2625–2630. doi: 10.1128/aac.39.12.2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ninio J. Gene conversion as a focusing mechanism for correlated mutations: a hypothesis. Mol Gen Genet. 1996 Jul 19;251(5):503–508. doi: 10.1007/BF02173638. [DOI] [PubMed] [Google Scholar]
  17. Pernodet J. L., Boccard F., Alegre M. T., Blondelet-Rouault M. H., Guérineau M. Resistance to macrolides, lincosamides and streptogramin type B antibiotics due to a mutation in an rRNA operon of Streptomyces ambofaciens. EMBO J. 1988 Jan;7(1):277–282. doi: 10.1002/j.1460-2075.1988.tb02810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sutcliffe J., Grebe T., Tait-Kamradt A., Wondrack L. Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother. 1996 Nov;40(11):2562–2566. doi: 10.1128/aac.40.11.2562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vannuffel P., Di Giambattista M., Morgan E. A., Cocito C. Identification of a single base change in ribosomal RNA leading to erythromycin resistance. J Biol Chem. 1992 Apr 25;267(12):8377–8382. [PubMed] [Google Scholar]
  20. Versalovic J., Shortridge D., Kibler K., Griffy M. V., Beyer J., Flamm R. K., Tanaka S. K., Graham D. Y., Go M. F. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob Agents Chemother. 1996 Feb;40(2):477–480. doi: 10.1128/aac.40.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wallace R. J., Jr, Meier A., Brown B. A., Zhang Y., Sander P., Onyi G. O., Böttger E. C. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother. 1996 Jul;40(7):1676–1681. doi: 10.1128/aac.40.7.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES