Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jun;41(6):1335–1344. doi: 10.1128/aac.41.6.1335

The microbicidal agent C31G inhibits Chlamydia trachomatis infectivity in vitro.

P B Wyrick 1, S T Knight 1, D G Gerbig Jr 1, J E Raulston 1, C H Davis 1, T R Paul 1, D Malamud 1
PMCID: PMC163911  PMID: 9174195

Abstract

Safe and effective vaginal microbicidal compounds are being sought to offer women an independent method for protection against transmission of sexually acquired pathogens. The purpose of this study was to examine the efficacy of two formulations of one such compound, C31G, against Chlamydia trachomatis serovar E alone, its host epithelial cell (HEC-1B) alone, and against chlamydiae-infected HEC-1B cells. Preexposure of isolated, purified infectious chlamydial elementary bodies (EB) to C31G, at pHs 7.2 and 5.7, for 1 h at 4 degrees C resulted in reduced infectivity of EB for HEC-1B cells. Examination of the C31G-exposed 35S-EB on sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiographs and by Western blotting revealed a C31G concentration-dependent and pH-dependent destabilization of the chlamydial envelope, resulting in the release of chlamydial lipopolysaccharide and proteins. Interestingly, when the host human genital columnar epithelial cells were infected with chlamydiae and then exposed to dilute concentrations of C31G which did not alter epithelial cell viability, chlamydial infectivity was also markedly reduced. C31G gained access to the developing chlamydial inclusion causing damage to or destruction of metabolically active reticulate bodies as well as apparent alteration of the inclusion membrane, which resulted in premature escape of chlamydial antigen to the infected epithelial surface. These studies show that the broad-spectrum antiviral and antibacterial microbicide C31G also has antichlamydial activity.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourinbaiar A. S., Lee-Huang S. Comparative in vitro study of contraceptive agents with anti-HIV activity: gramicidin, nonoxynol-9, and gossypol. Contraception. 1994 Feb;49(2):131–137. doi: 10.1016/0010-7824(94)90088-4. [DOI] [PubMed] [Google Scholar]
  2. Caldwell H. D., Hitchcock P. J. Monoclonal antibody against a genus-specific antigen of Chlamydia species: location of the epitope on chlamydial lipopolysaccharide. Infect Immun. 1984 May;44(2):306–314. doi: 10.1128/iai.44.2.306-314.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Calis S., Yulug N., Sumnu M., Ayhan A., Hincal A. A. A non-antibiotic antimicrobial mixture (C31G): evaluation of the antimicrobial efficiency of C31G on vaginal cultures. Boll Chim Farm. 1992 Oct;131(9):335–338. [PubMed] [Google Scholar]
  4. Chantler E., Fisher H., Solanki S., Elstein M. Quantification of the in vitro activity of some compounds with spermicidal activity. Contraception. 1992 Dec;46(6):527–536. doi: 10.1016/0010-7824(92)90117-c. [DOI] [PubMed] [Google Scholar]
  5. Cookson C. WHO to concentrate HIV strategy on vaginal microbicide. BMJ. 1993 Nov 27;307(6916):1375–1376. doi: 10.1136/bmj.307.6916.1375. [DOI] [PubMed] [Google Scholar]
  6. Corner A. M., Dolan M. M., Yankell S. L., Malamud D. C31G, a new agent for oral use with potent antimicrobial and antiadherence properties. Antimicrob Agents Chemother. 1988 Mar;32(3):350–353. doi: 10.1128/aac.32.3.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elias C. J., Heise L. L. Challenges for the development of female-controlled vaginal microbicides. AIDS. 1994 Jan;8(1):1–9. doi: 10.1097/00002030-199401000-00002. [DOI] [PubMed] [Google Scholar]
  8. Friberg J., Gleicher N., Suarez M., Confino E. Chlamydia attached to spermatozoa. J Infect Dis. 1985 Oct;152(4):854–854. doi: 10.1093/infdis/152.4.854. [DOI] [PubMed] [Google Scholar]
  9. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ho J. L., He S., Hu A., Geng J., Basile F. G., Almeida M. G., Saito A. Y., Laurence J., Johnson W. D., Jr Neutrophils from human immunodeficiency virus (HIV)-seronegative donors induce HIV replication from HIV-infected patients' mononuclear cells and cell lines: an in vitro model of HIV transmission facilitated by Chlamydia trachomatis. J Exp Med. 1995 Apr 1;181(4):1493–1505. [PMC free article] [PubMed] [Google Scholar]
  11. Kreiss J., Ngugi E., Holmes K., Ndinya-Achola J., Waiyaki P., Roberts P. L., Ruminjo I., Sajabi R., Kimata J., Fleming T. R. Efficacy of nonoxynol 9 contraceptive sponge use in preventing heterosexual acquisition of HIV in Nairobi prostitutes. JAMA. 1992 Jul 22;268(4):477–482. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Maslow A. S., Davis C. H., Choong J., Wyrick P. B. Estrogen enhances attachment of Chlamydia trachomatis to human endometrial epithelial cells in vitro. Am J Obstet Gynecol. 1988 Oct;159(4):1006–1014. doi: 10.1016/s0002-9378(88)80189-3. [DOI] [PubMed] [Google Scholar]
  14. Mayer K. H., Anderson D. J. Heterosexual HIV transmission. Infect Agents Dis. 1995 Dec;4(4):273–284. [PubMed] [Google Scholar]
  15. Miller R. G., Whittington W. L., Coleman R. M., Nigida S. M., Jr Acquisition of concomitant oral and genital infection with herpes simplex virus type 2. Sex Transm Dis. 1987 Jan-Mar;14(1):41–43. doi: 10.1097/00007435-198701000-00009. [DOI] [PubMed] [Google Scholar]
  16. Moorman D. R., Sixbey J. W., Wyrick P. B. Interaction of Chlamydia trachomatis with human genital epithelium in culture. J Gen Microbiol. 1986 Apr;132(4):1055–1067. doi: 10.1099/00221287-132-4-1055. [DOI] [PubMed] [Google Scholar]
  17. Patton D. L., Wolner-Hanssen P., Zeng W., Lampe M., Wong K., Stamm W. E., Holmes K. K. The role of spermatozoa in the pathogenesis of Chlamydia trachomatis salpingitis in a primate model. Sex Transm Dis. 1993 Jul-Aug;20(4):214–219. [PubMed] [Google Scholar]
  18. Pauwels R., De Clercq E. Development of vaginal microbicides for the prevention of heterosexual transmission of HIV. J Acquir Immune Defic Syndr Hum Retrovirol. 1996 Mar 1;11(3):211–221. doi: 10.1097/00042560-199603010-00001. [DOI] [PubMed] [Google Scholar]
  19. Pearce-Pratt R., Phillips D. M. Sulfated polysaccharides inhibit lymphocyte-to-epithelial transmission of human immunodeficiency virus-1. Biol Reprod. 1996 Jan;54(1):173–182. doi: 10.1095/biolreprod54.1.173. [DOI] [PubMed] [Google Scholar]
  20. Plummer F. A., Simonsen J. N., Cameron D. W., Ndinya-Achola J. O., Kreiss J. K., Gakinya M. N., Waiyaki P., Cheang M., Piot P., Ronald A. R. Cofactors in male-female sexual transmission of human immunodeficiency virus type 1. J Infect Dis. 1991 Feb;163(2):233–239. doi: 10.1093/infdis/163.2.233. [DOI] [PubMed] [Google Scholar]
  21. Potts M. The urgent need for a vaginal microbicide in the prevention of HIV transmission. Am J Public Health. 1994 Jun;84(6):890–891. doi: 10.2105/ajph.84.6.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosenberg M. J., Holmes K. K. Virucides in prevention of HIV infection. Research Priorities. World Health Organization Working Group on Virucides. Sex Transm Dis. 1993 Jan-Feb;20(1):41–44. doi: 10.1097/00007435-199301000-00008. [DOI] [PubMed] [Google Scholar]
  23. Rotman B., Papermaster B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A. 1966 Jan;55(1):134–141. doi: 10.1073/pnas.55.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thompson K. A., Malamud D., Storey B. T. Assessment of the anti-microbial agent C31G as a spermicide: comparison with nonoxynol-9. Contraception. 1996 May;53(5):313–318. [PubMed] [Google Scholar]
  25. Wyrick P. B., Choong J., Davis C. H., Knight S. T., Royal M. O., Maslow A. S., Bagnell C. R. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect Immun. 1989 Aug;57(8):2378–2389. doi: 10.1128/iai.57.8.2378-2389.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wyrick P. B., Gerbig D. G., Jr, Knight S. T., Raulston J. E. Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads. Microb Pathog. 1996 Jan;20(1):31–40. doi: 10.1006/mpat.1996.0003. [DOI] [PubMed] [Google Scholar]
  27. Wølner-Hanssen P., Mårdh P. A. In vitro tests of the adherence of Chlamydia trachomatis to human spermatozoa. Fertil Steril. 1984 Jul;42(1):102–107. doi: 10.1016/s0015-0282(16)47966-5. [DOI] [PubMed] [Google Scholar]
  28. Zaretzky F. R., Pearce-Pratt R., Phillips D. M. Sulfated polyanions block Chlamydia trachomatis infection of cervix-derived human epithelia. Infect Immun. 1995 Sep;63(9):3520–3526. doi: 10.1128/iai.63.9.3520-3526.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zekeng L., Feldblum P. J., Oliver R. M., Kaptue L. Barrier contraceptive use and HIV infection among high-risk women in Cameroon. AIDS. 1993 May;7(5):725–731. doi: 10.1097/00002030-199305000-00018. [DOI] [PubMed] [Google Scholar]
  30. de Waal A., Vaz Gomes A., Mensink A., Grootegoed J. A., Westerhoff H. V. Magainins affect respiratory control, membrane potential and motility of hamster spermatozoa. FEBS Lett. 1991 Nov 18;293(1-2):219–223. doi: 10.1016/0014-5793(91)81191-a. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES