Abstract
Detailed analysis of the endogenous sterol content of purified Pneumocystis carinii preparations by gas-liquid chromatography coupled to mass spectrometry suggested that this parasite can both synthesize de novo steroid skeletons (to produce delta7 sterols) and take them from the infected host (leading to delta5 sterols). In both cases the final products are 24-alkyl sterols, resulting from the action of delta24(25) and delta24(24') sterol methyltransferases, enzymes not present in vertebrates. To investigate the physiological significance of these sterols, cultures of P. carinii in embryonic lung cells were exposed to 22,26-azasterol (20-piperidin-2-yl-5alpha-pregnan-3beta-20(R)-diol), a compound previously shown to inhibit both enzymes and to halt cell proliferation in fungi and protozoa. This compound produced a dose-dependent reduction in the parasite proliferation, with a 50% inhibitory concentration of 0.3 microM and 80% reduction of growth after 96 h at 10 microM. Correspondingly, parasites treated with the azasterol at 10 microM for 48 h accumulated 24-desalkyl sterols such as zymosterol (cholesta-8,24-dien-3beta-ol) and cholesta-8,14,24-trien-3beta-ol to ca. 40% of the total mass of endogenous sterols. This is the first report on the antiproliferative effects of a sterol biosynthesis inhibitor on P. carinii and indicate that sterol methyltransferase inhibitors could be the basis of a novel and specific chemotherapeutic approach to the treatment of P. carinii infections.
Full Text
The Full Text of this article is available as a PDF (181.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartlett M. S., Eichholtz R., Smith J. W. Antimicrobial susceptibility of Pneumocystis carinii in culture. Diagn Microbiol Infect Dis. 1985 Sep;3(5):381–387. doi: 10.1016/0732-8893(85)90076-8. [DOI] [PubMed] [Google Scholar]
- Bartlett M. S., Fishman J. A., Queener S. F., Durkin M. M., Jay M. A., Smith J. W. New rat model of Pneumocystis carinii infection. J Clin Microbiol. 1988 Jun;26(6):1100–1102. doi: 10.1128/jcm.26.6.1100-1102.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartlett M. S., Queener S. F., Shaw M. M., Richardson J. D., Smith J. W. Pneumocystis carinii is resistant to imidazole antifungal agents. Antimicrob Agents Chemother. 1994 Aug;38(8):1859–1861. doi: 10.1128/aac.38.8.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartlett M. S., Shaw M., Navaran P., Smith J. W., Queener S. F. Evaluation of potent inhibitors of dihydrofolate reductase in a culture model for growth of Pneumocystis carinii. Antimicrob Agents Chemother. 1995 Nov;39(11):2436–2441. doi: 10.1128/aac.39.11.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartlett M. S., Smith J. W. Pneumocystis carinii, an opportunist in immunocompromised patients. Clin Microbiol Rev. 1991 Apr;4(2):137–149. doi: 10.1128/cmr.4.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushion M. T., Harmsen A., Matsumoto Y., Stringer J. R., Wakefield A. E., Yamada M. Recent advances in the biology of Pneumocystis carinii. J Med Vet Mycol. 1994;32 (Suppl 1):217–228. [PubMed] [Google Scholar]
- Florin-Christensen M., Florin-Christensen J., Wu Y. P., Zhou L., Gupta A., Rudney H., Kaneshiro E. S. Occurrence of specific sterols in Pneumocystis carinii. Biochem Biophys Res Commun. 1994 Jan 14;198(1):236–242. doi: 10.1006/bbrc.1994.1033. [DOI] [PubMed] [Google Scholar]
- Furlong S. T., Samia J. A., Rose R. M., Fishman J. A. Phytosterols are present in Pneumocystis carinii. Antimicrob Agents Chemother. 1994 Nov;38(11):2534–2540. doi: 10.1128/aac.38.11.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneshiro E. S., Cushion M. T., Walzer P. D., Jayasimhulu K. Analyses of Pneumocystis fatty acids. J Protozool. 1989 Jan-Feb;36(1):69S–72S. [PubMed] [Google Scholar]
- Kaneshiro E. S., Ellis J. E., Jayasimhulu K., Beach D. H. Evidence for the presence of "metabolic sterols" in Pneumocystis: identification and initial characterization of Pneumocystis carinii sterols. J Eukaryot Microbiol. 1994 Jan-Feb;41(1):78–85. doi: 10.1111/j.1550-7408.1994.tb05938.x. [DOI] [PubMed] [Google Scholar]
- Larralde G., Vivas J., Urbina J. A. Concentration and time dependence of the effects of ketoconazole on growth and sterol synthesis by Trypanosoma (Schizotrypanum) cruzi epimastigotes. Acta Cient Venez. 1988;39(2):140–146. [PubMed] [Google Scholar]
- Lee C. H., Bauer N. L., Shaw M. M., Durkin M. M., Bartlett M. S., Queener S. F., Smith J. W. Proliferation of rat Pneumocystis carinii on cells sheeted on microcarrier beads in spinner flasks. J Clin Microbiol. 1993 Jun;31(6):1659–1662. doi: 10.1128/jcm.31.6.1659-1662.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masur H. Prevention and treatment of pneumocystis pneumonia. N Engl J Med. 1992 Dec 24;327(26):1853–1860. doi: 10.1056/NEJM199212243272606. [DOI] [PubMed] [Google Scholar]
- Mercer E. I. Inhibitors of sterol biosynthesis and their applications. Prog Lipid Res. 1993;32(4):357–416. doi: 10.1016/0163-7827(93)90016-p. [DOI] [PubMed] [Google Scholar]
- Parks L. W., Casey W. M. Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol. 1995;49:95–116. doi: 10.1146/annurev.mi.49.100195.000523. [DOI] [PubMed] [Google Scholar]
- Popják G., Meenan A., Parish E. J., Nes W. D. Inhibition of cholesterol synthesis and cell growth by 24(R,S),25-iminolanosterol and triparanol in cultured rat hepatoma cells. J Biol Chem. 1989 Apr 15;264(11):6230–6238. [PubMed] [Google Scholar]
- Smulian A. G., Walzer P. D. The biology of Pneumocystis carinii. Crit Rev Microbiol. 1992;18(3):191–216. doi: 10.3109/10408419209114558. [DOI] [PubMed] [Google Scholar]
- Ulsamer A. G., Smith F. R., Korn E. D. Lipids of Acanthamoeba castellanii. Composition and effects of phagocytosis on incorporation of radioactive precursors. J Cell Biol. 1969 Oct;43(1):105–114. doi: 10.1083/jcb.43.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urbina J. A., Lazardi K., Aguirre T., Piras M. M., Piras R. Antiproliferative effects and mechanism of action of ICI 195,739, a novel bis-triazole derivative, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother. 1991 Apr;35(4):730–735. doi: 10.1128/aac.35.4.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urbina J. A., Lazardi K., Aguirre T., Piras M. M., Piras R. Antiproliferative synergism of the allylamine SF 86-327 and ketoconazole on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother. 1988 Aug;32(8):1237–1242. doi: 10.1128/aac.32.8.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urbina J. A., Lazardi K., Marchan E., Visbal G., Aguirre T., Piras M. M., Piras R., Maldonado R. A., Payares G., de Souza W. Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother. 1993 Mar;37(3):580–591. doi: 10.1128/aac.37.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urbina J. A., Vivas J., Lazardi K., Molina J., Payares G., Piras M. M., Piras R. Antiproliferative effects of delta 24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Chemotherapy. 1996 Jul-Aug;42(4):294–307. doi: 10.1159/000239458. [DOI] [PubMed] [Google Scholar]
- Urbina J. A., Vivas J., Visbal G., Contreras L. M. Modification of the sterol composition of Trypanosoma (Schizotrypanum) cruzi epimastigotes by delta 24(25)-sterol methyl transferase inhibitors and their combinations with ketoconazole. Mol Biochem Parasitol. 1995 Jul;73(1-2):199–210. doi: 10.1016/0166-6851(95)00117-j. [DOI] [PubMed] [Google Scholar]