Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jul;41(7):1460–1464. doi: 10.1128/aac.41.7.1460

Sequence analysis and enzyme kinetics of the L2 serine beta-lactamase from Stenotrophomonas maltophilia.

T R Walsh 1, A P MacGowan 1, P M Bennett 1
PMCID: PMC163940  PMID: 9210666

Abstract

The L2 serine active-site beta-lactamase from Stenotrophomonas maltophilia has been classified as a clavulanic acid-sensitive cephalosporinase. The gene encoding this enzyme from S. maltophilia 1275 IID has been cloned on a 3.3-kb fragment into pK18 under the control of a Ptac promoter to generate recombinant plasmid pUB5840; when expressed in Escherichia coli, this gene confers resistance to cephalosporins and penicillins. Sequence analysis has revealed an open reading frame (ORF) of 909 bp with a GC content of 71.6%, comparable to that of the L1 metallo-beta-lactamase gene (68.4%) from the same bacterium. The ORF encodes an unmodified protein of 303 amino acids with a predicted molecular mass of 31.5 kDa, accommodating a putative leader peptide of 27 amino acids. Comparison of the amino acid sequence with those of other beta-lactamases showed it to be most closely related (54% identity) to the BLA-A beta-lactamase from Yersinia enterocolitica. Sequence identity is most obvious near the STXK active-site motif and the SDN loop motif common to all serine active-site penicillinases. Sequences outside the conserved regions display low homology with comparable regions of other class A penicillinases. Kinetics of the enzyme from the cloned gene demonstrated an increase in activity with cefotaxime but markedly less activity with imipenem than previously reported. Hence, the S. maltophilia L2 beta-lactamase is an inducible Ambler class A beta-lactamase which would account for the sensitivity to clavulanic acid.

Full Text

The Full Text of this article is available as a PDF (291.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akova M., Bonfiglio G., Livermore D. M. Susceptibility to beta-lactam antibiotics of mutant strains of Xanthomonas maltophilia with high- and low-level constitutive expression of L1 and L2 beta-lactamases. J Med Microbiol. 1991 Oct;35(4):208–213. doi: 10.1099/00222615-35-4-208. [DOI] [PubMed] [Google Scholar]
  2. Amicosante G., Oratore A., Franceschini N., Maccarrone M., Strom R., Galleni M., Frère J. M. Citrobacter diversus ULA-27 beta-lactamases. Improved purification and general properties. Biochem J. 1988 Sep 15;254(3):885–890. doi: 10.1042/bj2540885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barthélémy M., Péduzzi J., Bernard H., Tancrède C., Labia R. Close amino acid sequence relationship between the new plasmid-mediated extended-spectrum beta-lactamase MEN-1 and chromosomally encoded enzymes of Klebsiella oxytoca. Biochim Biophys Acta. 1992 Jul 13;1122(1):15–22. doi: 10.1016/0167-4838(92)90121-s. [DOI] [PubMed] [Google Scholar]
  4. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cartwright S. J., Waley S. G. Purification of beta-lactamases by affinity chromatography on phenylboronic acid-agarose. Biochem J. 1984 Jul 15;221(2):505–512. doi: 10.1042/bj2210505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fournier B., Lagrange P. H., Philippon A. beta-lactamase gene promoters of 71 clinical strains of Klebsiella oxytoca. Antimicrob Agents Chemother. 1996 Feb;40(2):460–463. doi: 10.1128/aac.40.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ishii Y., Ohno A., Taguchi H., Imajo S., Ishiguro M., Matsuzawa H. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother. 1995 Oct;39(10):2269–2275. doi: 10.1128/aac.39.10.2269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jones M. E., Avison M. B., Damdinsuren E., MacGowan A. P., Bennett P. M. Heterogeneity at the beta-lactamase structural gene ampC amongst Citrobacter spp. assessed by polymerase chain reaction analysis: potential for typing at a molecular level. J Med Microbiol. 1994 Sep;41(3):209–214. doi: 10.1099/00222615-41-3-209. [DOI] [PubMed] [Google Scholar]
  9. Laing F. P., Ramotar K., Read R. R., Alfieri N., Kureishi A., Henderson E. A., Louie T. J. Molecular epidemiology of Xanthomonas maltophilia colonization and infection in the hospital environment. J Clin Microbiol. 1995 Mar;33(3):513–518. doi: 10.1128/jcm.33.3.513-518.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Linström E. B., Boman H. G., Steele B. B. Resistance of Escherichia coli to penicillins. VI. Purification and characterization of the chromosomally mediated penicillinase present in ampA-containing strains. J Bacteriol. 1970 Jan;101(1):218–231. doi: 10.1128/jb.101.1.218-231.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Normark S., Burman L. G. Resistance of Escherichia coli to penicillins: fine-structure mapping and dominance of chromosomal beta-lactamase mutations. J Bacteriol. 1977 Oct;132(1):1–7. doi: 10.1128/jb.132.1.1-7.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paton R., Miles R. S., Amyes S. G. Biochemical properties of inducible beta-lactamases produced from Xanthomonas maltophilia. Antimicrob Agents Chemother. 1994 Sep;38(9):2143–2149. doi: 10.1128/aac.38.9.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Payne D. J., Cramp R., Bateson J. H., Neale J., Knowles D. Rapid identification of metallo- and serine beta-lactamases. Antimicrob Agents Chemother. 1994 May;38(5):991–996. doi: 10.1128/aac.38.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pradhananga S. L., Rowling P. J., Simpson I. N., Payne D. J. Sensitivity of L-2 type beta-lactamases from Stenotrophomonas maltophilia to serine active site beta-lactamase inhibitors. J Antimicrob Chemother. 1996 Feb;37(2):394–396. doi: 10.1093/jac/37.2.394. [DOI] [PubMed] [Google Scholar]
  15. Pridmore R. D. New and versatile cloning vectors with kanamycin-resistance marker. Gene. 1987;56(2-3):309–312. doi: 10.1016/0378-1119(87)90149-1. [DOI] [PubMed] [Google Scholar]
  16. Péduzzi J., Reynaud A., Baron P., Barthélémy M., Labia R. Chromosomally encoded cephalosporin-hydrolyzing beta-lactamase of Proteus vulgaris RO104 belongs to Ambler's class A. Biochim Biophys Acta. 1994 Jul 20;1207(1):31–39. doi: 10.1016/0167-4838(94)90048-5. [DOI] [PubMed] [Google Scholar]
  17. Reynaud A., Péduzzi J., Barthélémy M., Labia R. Cefotaxime-hydrolysing activity of the beta-lactamase of Klebsiella oxytoca D488 could be related to a threonine residue at position 140. FEMS Microbiol Lett. 1991 Jun 15;65(2):185–192. doi: 10.1016/0378-1097(91)90301-p. [DOI] [PubMed] [Google Scholar]
  18. Rogers M. B., Parker A. C., Smith C. J. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob Agents Chemother. 1993 Nov;37(11):2391–2400. doi: 10.1128/aac.37.11.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosta S., Mett H. Physiological studies of the regulation of beta-lactamase expression in Pseudomonas maltophilia. J Bacteriol. 1989 Jan;171(1):483–487. doi: 10.1128/jb.171.1.483-487.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saino Y., Inoue M., Mitsuhashi S. Purification and properties of an inducible cephalosporinase from Pseudomonas maltophilia GN12873. Antimicrob Agents Chemother. 1984 Mar;25(3):362–365. doi: 10.1128/aac.25.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seoane A., García Lobo J. M. Nucleotide sequence of a new class A beta-lactamase gene from the chromosome of Yersinia enterocolitica: implications for the evolution of class A beta-lactamases. Mol Gen Genet. 1991 Aug;228(1-2):215–220. doi: 10.1007/BF00282468. [DOI] [PubMed] [Google Scholar]
  22. Smith C. J., Bennett T. K., Parker A. C. Molecular and genetic analysis of the Bacteroides uniformis cephalosporinase gene, cblA, encoding the species-specific beta-lactamase. Antimicrob Agents Chemother. 1994 Aug;38(8):1711–1715. doi: 10.1128/aac.38.8.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spencer R. C. The emergence of epidemic, multiple-antibiotic-resistant Stenotrophomonas (Xanthomonas) maltophilia and Burkholderia (Pseudomonas) cepacia. J Hosp Infect. 1995 Jun;30 (Suppl):453–464. doi: 10.1016/0195-6701(95)90049-7. [DOI] [PubMed] [Google Scholar]
  24. Ubben D., Schmitt R. A transposable promoter and transposable promoter probes derived from Tn1721. Gene. 1987;53(1):127–134. doi: 10.1016/0378-1119(87)90100-4. [DOI] [PubMed] [Google Scholar]
  25. Vartivarian S., Anaissie E., Bodey G., Sprigg H., Rolston K. A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy. Antimicrob Agents Chemother. 1994 Mar;38(3):624–627. doi: 10.1128/aac.38.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walsh T. R., Hall L., Assinder S. J., Nichols W. W., Cartwright S. J., MacGowan A. P., Bennett P. M. Sequence analysis of the L1 metallo-beta-lactamase from Xanthomonas maltophilia. Biochim Biophys Acta. 1994 Jun 21;1218(2):199–201. doi: 10.1016/0167-4781(94)90011-6. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES