Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jul;41(7):1475–1481. doi: 10.1128/aac.41.7.1475

Comparative activity of trovafloxacin, alone and in combination with other agents, against gram-negative nonfermentative rods.

M A Visalli 1, S Bajaksouzian 1, M R Jacobs 1, P C Appelbaum 1
PMCID: PMC163943  PMID: 9210669

Abstract

In the first part of this study, agar dilution MICs were used to test the activities of trovafloxacin, ciprofloxacin, ofloxacin, levofloxacin, sparfloxacin, clinafloxacin, ceftazidime, and imipenem against 458 gram-negative nonfermenters. The overall respective MICs at which 50% of isolates are inhibited (MIC50s) and MIC90s were as follows: trovafloxacin, 1.0 and 16.0 microg/ml; ciprofloxacin, 2.0 and 16.0 microg/ml; ofloxacin, 2.0 and 32.0 microg/ml; levofloxacin, 1.0 and 16.0 microg/ml; sparfloxacin, 1.0 and 16.0 microg/ml; clinafloxacin, 0.5 and 4.0 microg/ml; ceftazidime, 8.0 and 128.0 microg/ml; imipenem, 2.0 and 256.0 microg/ml. Clinafloxacin was the most active of all the quinolones tested. The MIC90s of trovafloxacin were < or = 4.0 microg/ml for Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Flavobacterium odoratum, and Chryseobacterium meningosepticum; trovafloxacin MIC90s were < or = 2.0 microg/ml for Moraxella spp., Pseudomonas stutzeri, and Chryseobacterium indologenes-C. gleum. Of the other quinolones tested, the MICs of sparfloxacin and levofloxacin were lower than those of ciprofloxacin and ofloxacin. High ceftazidime MICs (> or = 32.0 microg/ml) were observed for all nonfermentative species tested. Although for the majority of strains tested imipenem MICs were < or = 8.0 microg/ml, high imipenem MICs were observed for many species, especially S. maltophilia, Burkholderia cepacia, F. odoratum, and Chryseobacterium meningosepticum. For Alcaligenes xylosoxidans strains, the MICs of all compounds were generally a few dilutions lower than those for Alcaligenes faecalis-A. odorans. Time-kill studies with five strains revealed that trovafloxacin and all quinolones yielded more rapid time-kill kinetics than ceftazidime and imipenem. Synergy testing by checkerboard titrations of 286 strains with trovafloxacin combined with ceftazidime, amikacin, and imipenem revealed fractional inhibitory concentration (FIC) indices in the range indicating synergism (< or = 0.5) for 81, 41, and 40 strains, respectively, and FIC indices indicating additivity or indifference (> 0.5 to 4.0) for 205, 245, and 246 strains, respectively. No FIC indices indicating antagonism (> 4.0) were observed. Synergy between trovafloxacin and ceftazidime was found for 32 of 36 S. maltophilia strains. Time-kill studies with 20 strains showed that for most strains for which FIC indices were in the range indicating additivity or indifference, FIC indices indicated synergy by the time-kill method. Synergy was particularly noticeable for S. maltophilia strains with combinations of ceftazidime and trovafloxacin.

Full Text

The Full Text of this article is available as a PDF (166.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelbaum P. C., Spangler S. K., Sollenberger L. Susceptibility of non-fermentative gram-negative bacteria to ciprofloxacin, norfloxacin, amifloxacin, pefloxacin and cefpirome. J Antimicrob Chemother. 1986 Dec;18(6):675–679. doi: 10.1093/jac/18.6.675. [DOI] [PubMed] [Google Scholar]
  2. Appelbaum P. C., Spangler S. K., Tamarree T. Susceptibility of 310 nonfermentative gram-negative bacteria to aztreonam, carumonam, ciprofloxacin, ofloxacin and fleroxacin. Chemotherapy. 1988;34(1):40–45. doi: 10.1159/000238546. [DOI] [PubMed] [Google Scholar]
  3. Appelbaum P. C., Tamim J., Stavitz J., Aber R. C., Pankuch G. A. Sensitivity of 341 non-fermentative gram-negative bacteria to seven beta-lactam antibiotics. Eur J Clin Microbiol. 1982 Jun;1(3):159–165. doi: 10.1007/BF02019617. [DOI] [PubMed] [Google Scholar]
  4. Bajaksouzian S., Visalli M. A., Jacobs M. R., Appelbaum P. C. Activities of levofloxacin, ofloxacin, and ciprofloxacin, alone and in combination with amikacin, against acinetobacters as determined by checkerboard and time-kill studies. Antimicrob Agents Chemother. 1997 May;41(5):1073–1076. doi: 10.1128/aac.41.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bajaksouzian S., Visalli M. A., Jacobs M. R., Appelbaum P. C. Antipneumococcal activities of cefpirome and cefotaxime, alone and in combination with vancomycin and teicoplanin, determined by checkerboard and time-kill methods. Antimicrob Agents Chemother. 1996 Sep;40(9):1973–1976. doi: 10.1128/aac.40.9.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bergogne-Berezin E., Joly-Guillou M. L. Comparative activity of imipenem, ceftazidime and cefotaxime against Acinetobacter calcoaceticus. J Antimicrob Chemother. 1986 Dec;18 (Suppl E):35–39. doi: 10.1093/jac/18.supplement_e.35. [DOI] [PubMed] [Google Scholar]
  7. Bizet C., Tekaia F., Philippon A. In-vitro susceptibility of Alcaligenes faecalis compared with those of other Alcaligenes spp. to antimicrobial agents including seven beta-lactams. J Antimicrob Chemother. 1993 Dec;32(6):907–910. doi: 10.1093/jac/32.6.907. [DOI] [PubMed] [Google Scholar]
  8. Cantón E., Pemán J., Jimenez M. T., Ramón M. S., Gobernado M. In vitro activity of sparfloxacin compared with those of five other quinolones. Antimicrob Agents Chemother. 1992 Mar;36(3):558–565. doi: 10.1128/aac.36.3.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cappelletty D. M., Rybak M. J. Comparison of methodologies for synergism testing of drug combinations against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996 Mar;40(3):677–683. doi: 10.1128/aac.40.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Child J., Andrews J., Boswell F., Brenwald N., Wise R. The in-vitro activity of CP 99,219, a new naphthyridone antimicrobial agent: a comparison with fluoroquinolone agents. J Antimicrob Chemother. 1995 Jun;35(6):869–876. doi: 10.1093/jac/35.6.869. [DOI] [PubMed] [Google Scholar]
  11. Decré D., Arlet G., Danglot C., Lucet J. C., Fournier G., Bergogne-Bérézin E., Philippon A. A beta-lactamase-overproducing strain of Alcaligenes denitrificans subsp. xylosoxydans isolated from a case of meningitis. J Antimicrob Chemother. 1992 Dec;30(6):769–779. doi: 10.1093/jac/30.6.769. [DOI] [PubMed] [Google Scholar]
  12. Dholakia N., Rolston K. V., Ho D. H., LeBlanc B., Bodey G. P. Susceptibilities of bacterial isolates from patients with cancer to levofloxacin and other quinolones. Antimicrob Agents Chemother. 1994 Apr;38(4):848–852. doi: 10.1128/aac.38.4.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fass R. J., Barnishan J. In vitro susceptibilities of nonfermentative gram-negative bacilli other than Pseudomonas aeruginosa to 32 antimicrobial agents. Rev Infect Dis. 1980 Nov-Dec;2(6):841–853. doi: 10.1093/clinids/2.6.841. [DOI] [PubMed] [Google Scholar]
  14. Fass R. J., Barnishan J., Solomon M. C., Ayers L. W. In vitro activities of quinolones, beta-lactams, tobramycin, and trimethoprim-sulfamethoxazole against nonfermentative gram-negative bacilli. Antimicrob Agents Chemother. 1996 Jun;40(6):1412–1418. doi: 10.1128/aac.40.6.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fu K. P., Lafredo S. C., Foleno B., Isaacson D. M., Barrett J. F., Tobia A. J., Rosenthale M. E. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin), an optically active ofloxacin. Antimicrob Agents Chemother. 1992 Apr;36(4):860–866. doi: 10.1128/aac.36.4.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glupczynski Y., Hansen W., Freney J., Yourassowsky E. In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents. Antimicrob Agents Chemother. 1988 Feb;32(2):276–278. doi: 10.1128/aac.32.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gooding B. B., Jones R. N. In vitro antimicrobial activity of CP-99,219, a novel azabicyclo-naphthyridone. Antimicrob Agents Chemother. 1993 Feb;37(2):349–353. doi: 10.1128/aac.37.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Husson M. O., Izard D., Bouillet L., Leclerc H. Comparative in-vitro activity of ciprofloxacin against non-fermenters. J Antimicrob Chemother. 1985 Apr;15(4):457–462. doi: 10.1093/jac/15.4.457. [DOI] [PubMed] [Google Scholar]
  19. Joly-Guillou M. L., Bergogne-Bérézin E. In-vitro activity of sparfloxacin, pefloxacin, ciprofloxacin and temafloxacin against clinical isolates of Acinetobacter spp. J Antimicrob Chemother. 1992 Apr;29(4):466–468. doi: 10.1093/jac/29.4.466. [DOI] [PubMed] [Google Scholar]
  20. Khardori N., Reuben A., Rosenbaum B., Rolston K., Bodey G. P. In vitro susceptibility of Xanthomonas (Pseudomonas) maltophilia to newer antimicrobial agents. Antimicrob Agents Chemother. 1990 Aug;34(8):1609–1610. doi: 10.1128/aac.34.8.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lecso-Bornet M., Pierre J., Sarkis-Karam D., Lubera S., Bergogne-Berezin E. Susceptibility of Xanthomonas maltophilia to six quinolones and study of outer membrane proteins in resistant mutants selected in vitro. Antimicrob Agents Chemother. 1992 Mar;36(3):669–671. doi: 10.1128/aac.36.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Louie A., Baltch A. L., Ritz W. J., Smith R. P. Comparative in-vitro susceptibilities of Pseudomonas aeruginosa, Xanthomonas maltophilia, and Pseudomonas spp. to sparfloxacin (CI-978, AT-4140, PD131501) and reference antimicrobial agents. J Antimicrob Chemother. 1991 Jun;27(6):793–799. doi: 10.1093/jac/27.6.793. [DOI] [PubMed] [Google Scholar]
  23. Mensah K., Philippon A., Richard C., Névot P. Susceptibility of Alcaligenes denitrificans subspecies xylosoxydans to beta-lactam antibiotics. Eur J Clin Microbiol Infect Dis. 1990 Jun;9(6):405–409. doi: 10.1007/BF01979470. [DOI] [PubMed] [Google Scholar]
  24. Neu H. C., Chin N. X. In vitro activity of S-ofloxacin. Antimicrob Agents Chemother. 1989 Jul;33(7):1105–1107. doi: 10.1128/aac.33.7.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pankuch G. A., Jacobs M. R., Appelbaum P. C. Study of comparative antipneumococcal activities of penicillin G, RP 59500, erythromycin, sparfloxacin, ciprofloxacin, and vancomycin by using time-kill methodology. Antimicrob Agents Chemother. 1994 Sep;38(9):2065–2072. doi: 10.1128/aac.38.9.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Raimondi A., Moosdeen F., Williams J. D. Antibiotic resistance pattern of Flavobacterium meningosepticum. Eur J Clin Microbiol. 1986 Aug;5(4):461–463. doi: 10.1007/BF02075710. [DOI] [PubMed] [Google Scholar]
  27. Rolston K. V., Bodey G. P. In vitro susceptibility of Acinetobacter species to various antimicrobial agents. Antimicrob Agents Chemother. 1986 Nov;30(5):769–770. doi: 10.1128/aac.30.5.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rolston K. V., Ho D. H., LeBlanc B., Bodey G. P. In vitro activities of antimicrobial agents against clinical isolates of Flavimonas oryzihabitans obtained from patients with cancer. Antimicrob Agents Chemother. 1993 Nov;37(11):2504–2505. doi: 10.1128/aac.37.11.2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rolston K. V., Nguyen H., Messer M., LeBlanc B., Ho D. H., Bodey G. P. In vitro activity of sparfloxacin (CI-978; AT-4140) against clinical isolates from cancer patients. Antimicrob Agents Chemother. 1990 Nov;34(11):2263–2266. doi: 10.1128/aac.34.11.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seifert H., Baginski R., Schulze A., Pulverer G. Antimicrobial susceptibility of Acinetobacter species. Antimicrob Agents Chemother. 1993 Apr;37(4):750–753. doi: 10.1128/aac.37.4.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simor A. E., Louie L., Louie M. In vitro susceptibility of Acinetobacter baumannii to biapenem, piperacillin/tazobactam and thirteen other antimicrobial agents. Eur J Clin Microbiol Infect Dis. 1994 Jun;13(6):521–523. doi: 10.1007/BF01974651. [DOI] [PubMed] [Google Scholar]
  32. Smalley D. L., Hansen V. R., Baselski V. S. Susceptibility of Pseudomonas paucimobilis to 24 antimicrobial agents. Antimicrob Agents Chemother. 1983 Jan;23(1):161–162. doi: 10.1128/aac.23.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spangler S. K., Jacobs M. R., Appelbaum P. C. Activity of CP 99,219 compared with those of ciprofloxacin, grepafloxacin, metronidazole, cefoxitin, piperacillin, and piperacillin-tazobactam against 489 anaerobes. Antimicrob Agents Chemother. 1994 Oct;38(10):2471–2476. doi: 10.1128/aac.38.10.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spangler S. K., Visalli M. A., Jacobs M. R., Appelbaum P. C. Susceptibilities of non-Pseudomonas aeruginosa gram-negative nonfermentative rods to ciprofloxacin, ofloxacin, levofloxacin, D-ofloxacin, sparfloxacin, ceftazidime, piperacillin, piperacillin-tazobactam, trimethoprim-sulfamethoxazole, and imipenem. Antimicrob Agents Chemother. 1996 Mar;40(3):772–775. doi: 10.1128/aac.40.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tanaka M., Otsuki M., Une T., Nishino T. In-vitro and in-vivo activity of DR-3355, an optically active isomer of ofloxacin. J Antimicrob Chemother. 1990 Nov;26(5):659–666. doi: 10.1093/jac/26.5.659. [DOI] [PubMed] [Google Scholar]
  36. Vartivarian S., Anaissie E., Bodey G., Sprigg H., Rolston K. A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy. Antimicrob Agents Chemother. 1994 Mar;38(3):624–627. doi: 10.1128/aac.38.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Visser M. R., Rozenberg-Arska M., Beumer H., Hoepelman I. M., Verhoef J. Comparative in vitro antibacterial activity of sparfloxacin (AT-4140; RP 64206), a new quinolone. Antimicrob Agents Chemother. 1991 May;35(5):858–868. doi: 10.1128/aac.35.5.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wise R., Ashby J. P., Andrews J. M. In vitro activity of PD 127,391, an enhanced-spectrum quinolone. Antimicrob Agents Chemother. 1988 Aug;32(8):1251–1256. doi: 10.1128/aac.32.8.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. von Graevenitz A., Bucher C. The effect of N-formimidoyl thienamycin, ceftazidime, cefotiam, ceftriaxone and cefotaxime on non-fermentative Gram-negative rods, Aeromonas, Plesiomonas and Enterobacter agglomerans. Infection. 1982 Sep-Oct;10(5):293–298. doi: 10.1007/BF01640878. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES