Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jul;41(7):1482–1487. doi: 10.1128/aac.41.7.1482

Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus.

T C White 1
PMCID: PMC163944  PMID: 9210670

Abstract

Resistance to antifungal drugs, specifically azoles such as fluconazole, in the opportunistic yeast Candida albicans has become an increasing problem in human immunodeficiency virus (HIV)-infected individuals. The molecular mechanisms responsible for this resistance have only recently become apparent and can include alterations in the target enzyme of the azole drugs (lanosterol 14alpha demethylase [14DM]), or in various efflux pumps from both the ABC transporter and major facilitator gene families. To determine which of these possible mechanisms was associated with the development of drug resistance in a particular case, mRNA levels have been studied in a series of 17 clinical isolates taken from a single HIV-infected patient over 2 years, during which time the levels of fluconazole resistance of the strain increased over 200-fold. Using Northern blot analysis of steady-state levels of total RNA from these isolates, we observed increased mRNA levels of ERG16 (the 14DM-encoding gene), CDR1 (an ABC transporter), and MDR1 (a major facilitator) in this series. The timing of the increase in mRNA levels of each of these genes correlated with increases in fluconazole resistance of the isolates. Increased mRNA levels were not observed for three other ABC transporters, two other genes in the ergosterol biosynthetic pathway, or the NADPH-cytochrome P-450 oxidoreductase gene that transfers electrons from NADPH to 14DM. Increases in mRNA levels of ERG16 and CDR1 correlated with increased cross-resistance to ketoconazole and itraconazole but not to amphotericin B. A compilation of the genetic alterations identified in this series suggests that resistance develops gradually and is the sum of several different changes, all of which contribute to the final resistant phenotype.

Full Text

The Full Text of this article is available as a PDF (464.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Yaacov R., Knoller S., Caldwell G. A., Becker J. M., Koltin Y. Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother. 1994 Apr;38(4):648–652. doi: 10.1128/aac.38.4.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen C., Turi T. G., Sanglard D., Loper J. C. Isolation of the Candida tropicalis gene for P450 lanosterol demethylase and its expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1311–1317. doi: 10.1016/0006-291x(87)90792-3. [DOI] [PubMed] [Google Scholar]
  3. Clark F. S., Parkinson T., Hitchcock C. A., Gow N. A. Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: possible role for drug efflux in drug resistance. Antimicrob Agents Chemother. 1996 Feb;40(2):419–425. doi: 10.1128/aac.40.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doignon F., Aigle M., Ribereau-Gayon P. Resistance to imidazoles and triazoles in Saccharomyces cerevisiae as a new dominant marker. Plasmid. 1993 Nov;30(3):224–233. doi: 10.1006/plas.1993.1054. [DOI] [PubMed] [Google Scholar]
  5. Fling M. E., Kopf J., Tamarkin A., Gorman J. A., Smith H. A., Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet. 1991 Jun;227(2):318–329. doi: 10.1007/BF00259685. [DOI] [PubMed] [Google Scholar]
  6. Goldway M., Teff D., Schmidt R., Oppenheim A. B., Koltin Y. Multidrug resistance in Candida albicans: disruption of the BENr gene. Antimicrob Agents Chemother. 1995 Feb;39(2):422–426. doi: 10.1128/aac.39.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hitchcock C. A. Resistance of Candida albicans to azole antifungal agents. Biochem Soc Trans. 1993 Nov;21(4):1039–1047. doi: 10.1042/bst0211039. [DOI] [PubMed] [Google Scholar]
  8. Kalb V. F., Loper J. C., Dey C. R., Woods C. W., Sutter T. R. Isolation of a cytochrome P-450 structural gene from Saccharomyces cerevisiae. Gene. 1986;45(3):237–245. doi: 10.1016/0378-1119(86)90021-1. [DOI] [PubMed] [Google Scholar]
  9. Kelly R., Miller S. M., Lai M. H., Kirsch D. R. Cloning and characterization of the 2,3-oxidosqualene cyclase-coding gene of Candida albicans. Gene. 1990 Mar 15;87(2):177–183. doi: 10.1016/0378-1119(90)90299-7. [DOI] [PubMed] [Google Scholar]
  10. Kenna S., Bligh H. F., Watson P. F., Kelly S. L. Genetic and physiological analysis of azole sensitivity in Saccharomyces cerevisiae. J Med Vet Mycol. 1989;27(6):397–406. doi: 10.1080/02681218980000521. [DOI] [PubMed] [Google Scholar]
  11. Kirsch D. R., Lai M. H., O'Sullivan J. Isolation of the gene for cytochrome P450L1A1 (lanosterol 14 alpha-demethylase) from Candida albicans. Gene. 1988 Sep 7;68(2):229–237. doi: 10.1016/0378-1119(88)90025-x. [DOI] [PubMed] [Google Scholar]
  12. Lai M. H., Kirsch D. R. Nucleotide sequence of cytochrome P450 L1A1 (lanosterol 14 alpha-demethylase) from Candida albicans. Nucleic Acids Res. 1989 Jan 25;17(2):804–804. doi: 10.1093/nar/17.2.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Law D., Moore C. B., Wardle H. M., Ganguli L. A., Keaney M. G., Denning D. W. High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother. 1994 Nov;34(5):659–668. doi: 10.1093/jac/34.5.659. [DOI] [PubMed] [Google Scholar]
  14. Losberger C., Ernst J. F. Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res. 1989 Nov 25;17(22):9488–9488. doi: 10.1093/nar/17.22.9488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
  16. Michaelis S., Berkower C. Sequence comparison of yeast ATP-binding cassette proteins. Cold Spring Harb Symp Quant Biol. 1995;60:291–307. doi: 10.1101/sqb.1995.060.01.034. [DOI] [PubMed] [Google Scholar]
  17. Parkinson T., Falconer D. J., Hitchcock C. A. Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob Agents Chemother. 1995 Aug;39(8):1696–1699. doi: 10.1128/aac.39.8.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Penefsky H. S. A centrifuged-column procedure for the measurement of ligand binding by beef heart F1. Methods Enzymol. 1979;56:527–530. doi: 10.1016/0076-6879(79)56050-9. [DOI] [PubMed] [Google Scholar]
  19. Pfaller M. A., Rhine-Chalberg J., Redding S. W., Smith J., Farinacci G., Fothergill A. W., Rinaldi M. G. Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of Candida albicans from patients with AIDS and oral candidiasis. J Clin Microbiol. 1994 Jan;32(1):59–64. doi: 10.1128/jcm.32.1.59-64.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prasad R., De Wergifosse P., Goffeau A., Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995 Mar;27(4):320–329. doi: 10.1007/BF00352101. [DOI] [PubMed] [Google Scholar]
  21. Redding S., Smith J., Farinacci G., Rinaldi M., Fothergill A., Rhine-Chalberg J., Pfaller M. Resistance of Candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis. 1994 Feb;18(2):240–242. doi: 10.1093/clinids/18.2.240. [DOI] [PubMed] [Google Scholar]
  22. Rex J. H., Pfaller M. A., Galgiani J. N., Bartlett M. S., Espinel-Ingroff A., Ghannoum M. A., Lancaster M., Odds F. C., Rinaldi M. G., Walsh T. J. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis. 1997 Feb;24(2):235–247. doi: 10.1093/clinids/24.2.235. [DOI] [PubMed] [Google Scholar]
  23. Rex J. H., Rinaldi M. G., Pfaller M. A. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995 Jan;39(1):1–8. doi: 10.1128/aac.39.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rodríguez-Tudela J. L., Martínez-Suárez J. V., Dronda F., Laguna F., Chaves F., Valencia E. Correlation of in-vitro susceptibility test results with clinical response: a study of azole therapy in AIDS patients. J Antimicrob Chemother. 1995 Jun;35(6):793–804. doi: 10.1093/jac/35.6.793. [DOI] [PubMed] [Google Scholar]
  25. Roessner C. A., Min C., Hardin S. H., Harris-Haller L. W., McCollum J. C., Scott A. I. Sequence of the Candida albicans erg7 gene. Gene. 1993 May 15;127(1):149–150. doi: 10.1016/0378-1119(93)90631-c. [DOI] [PubMed] [Google Scholar]
  26. Sanglard D., Ischer F., Monod M., Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997 Feb;143(Pt 2):405–416. doi: 10.1099/00221287-143-2-405. [DOI] [PubMed] [Google Scholar]
  27. Sanglard D., Ischer F., Monod M., Bille J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother. 1996 Oct;40(10):2300–2305. doi: 10.1128/aac.40.10.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanglard D., Kuchler K., Ischer F., Pagani J. L., Monod M., Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995 Nov;39(11):2378–2386. doi: 10.1128/aac.39.11.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. White T. C., Agabian N. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol. 1995 Sep;177(18):5215–5221. doi: 10.1128/jb.177.18.5215-5221.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. White T. C., Pfaller M. A., Rinaldi M. G., Smith J., Redding S. W. Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient. Oral Dis. 1997 May;3 (Suppl 1):S102–S109. doi: 10.1111/j.1601-0825.1997.tb00336.x. [DOI] [PubMed] [Google Scholar]
  31. White T. C. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans. Antimicrob Agents Chemother. 1997 Jul;41(7):1488–1494. doi: 10.1128/aac.41.7.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES