Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jul;41(7):1495–1499. doi: 10.1128/aac.41.7.1495

Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis.

J P Carlier 1, N Sellier 1, M N Rager 1, G Reysset 1
PMCID: PMC163946  PMID: 9210672

Abstract

We investigated the metabolism of dimetridazole (1,2-dimethyl-5-nitroimidazole) (DMZ) by the resting cell method in a susceptible strain of Bacteroides fragilis and in the same strain containing the nimA gene, which conferred resistance to 5-nitroimidazole drugs. In both cases, under strict anaerobic conditions DMZ was metabolized without major ring cleavage or nitrate formation. However, one of two distinct metabolic pathways is involved, depending on the susceptibility of the strain. In the susceptible strain, the classical reduction pathway of nitroaromatic compounds is followed at least as far as the nitroso-radical anion, with further formation of the azo-dimer: 5,5'-azobis-(1,2-dimethylimidazole). In the resistant strain, DMZ is reduced to the amine derivative, namely, 5-amino-1,2-dimethylimidazole, preventing the formation of the toxic form of the drug. The specificity of the six-electron reduction of the nitro group, which is restricted to 4- and 5-nitroimidazole, suggests an enzymatic reaction. We thus conclude that nimA and related genes may encode a 5-nitroimidazole reductase.

Full Text

The Full Text of this article is available as a PDF (188.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chrystal E. J., Koch R. L., Goldman P. Metabolites from the reduction of metronidazole by xanthine oxidase. Mol Pharmacol. 1980 Jul;18(1):105–111. [PubMed] [Google Scholar]
  2. Edwards D. I. Nitroimidazole drugs--action and resistance mechanisms. I. Mechanisms of action. J Antimicrob Chemother. 1993 Jan;31(1):9–20. doi: 10.1093/jac/31.1.9. [DOI] [PubMed] [Google Scholar]
  3. Ehlhardt W. J., Beaulieu B. B., Jr, Goldman P. Formation of an amino reduction product of metronidazole in bacterial cultures: lack of bactericidal activity. Biochem Pharmacol. 1987 Jan 15;36(2):259–264. doi: 10.1016/0006-2952(87)90698-8. [DOI] [PubMed] [Google Scholar]
  4. Gorontzy T., Küver J., Blotevogel K. H. Microbial transformation of nitroaromatic compounds under anaerobic conditions. J Gen Microbiol. 1993 Jun;139(Pt 6):1331–1336. doi: 10.1099/00221287-139-6-1331. [DOI] [PubMed] [Google Scholar]
  5. Kinouchi T., Ohnishi Y. Purification and characterization of 1-nitropyrene nitroreductases from Bacteroides fragilis. Appl Environ Microbiol. 1983 Sep;46(3):596–604. doi: 10.1128/aem.46.3.596-604.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knox R. J., Edwards D. I., Knight R. C. The mechanism of nitroimidazole damage to DNA: coulometric evidence. Int J Radiat Oncol Biol Phys. 1984 Aug;10(8):1315–1318. doi: 10.1016/0360-3016(84)90339-0. [DOI] [PubMed] [Google Scholar]
  7. Knox R. J., Knight R. C., Edwards D. I. Studies on the action of nitroimidazole drugs. The products of nitroimidazole reduction. Biochem Pharmacol. 1983 Jul 15;32(14):2149–2156. doi: 10.1016/0006-2952(83)90220-4. [DOI] [PubMed] [Google Scholar]
  8. Koch R. L., Chrystal E. J., Beaulieu B. B., Jr, Goldman P. Acetamide--a metabolite of metronidazole formed by the intestinal flora. Biochem Pharmacol. 1979 Dec 15;28(24):3611–3615. doi: 10.1016/0006-2952(79)90407-6. [DOI] [PubMed] [Google Scholar]
  9. LaRusso N. F., Tomasz M., Müller M., Lipman R. Interaction of metronidazole with nucleic acids in vitro. Mol Pharmacol. 1977 Sep;13(5):872–882. [PubMed] [Google Scholar]
  10. Lin Y. Y., Smith L. L. Active hydrogen by chemical ionization mass spectrometry. Biomed Mass Spectrom. 1979 Jan;6(1):15–18. doi: 10.1002/bms.1200060104. [DOI] [PubMed] [Google Scholar]
  11. MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
  12. Midha K. K., McGilveray I. J., Cooper J. K. Determination of therapeutic levels of metronidazole in plasma by gas-liquid chromatography. J Chromatogr. 1973 Dec 19;87(2):491–497. doi: 10.1016/s0021-9673(01)91751-0. [DOI] [PubMed] [Google Scholar]
  13. Privitera G., Dublanchet A., Sebald M. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis. 1979 Jan;139(1):97–101. doi: 10.1093/infdis/139.1.97. [DOI] [PubMed] [Google Scholar]
  14. Reysset G. Genetics of 5-nitroimidazole resistance in Bacteroides species. Anaerobe. 1996 Apr;2(2):59–69. doi: 10.1006/anae.1996.0008. [DOI] [PubMed] [Google Scholar]
  15. Reysset G., Haggoud A., Su W. J., Sebald M. Genetic and molecular analysis of pIP417 and pIP419: Bacteroides plasmids encoding 5-nitroimidazole resistance. Plasmid. 1992 May;27(3):181–190. doi: 10.1016/0147-619x(92)90020-b. [DOI] [PubMed] [Google Scholar]
  16. Smith C. J. Development and use of cloning systems for Bacteroides fragilis: cloning of a plasmid-encoded clindamycin resistance determinant. J Bacteriol. 1985 Oct;164(1):294–301. doi: 10.1128/jb.164.1.294-301.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sullivan C. E., Tally F. P., Goldin B. R., Vouros P. Synthesis of 1-(2-hydroxyethyl)-2-methyl-5-aminoimidazole: a ring-intact reduction product of metronidazole. Biochem Pharmacol. 1982 Aug 15;31(16):2689–2691. doi: 10.1016/0006-2952(82)90722-5. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES