Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jul;41(7):1615–1617. doi: 10.1128/aac.41.7.1615

Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial.

K A Brogden 1, M Ackermann 1, K M Huttner 1
PMCID: PMC163973  PMID: 9210699

Abstract

Some inactive precursor proteins, or zymogens, contain small, amino terminus, homopolymeric regions of Asp that neutralize the cationic charge of the active protein during synthesis. After posttranslational cleavage, the anionic propeptide fragment may exhibit antimicrobial activity. To demonstrate this, ovine trypsinogen activation peptide, and frog (Xenopus laevis) PYL activation peptide, both containing homopolymeric regions of Asp, were synthesized and tested against previously described surfactant-associated anionic peptide. Peptides inhibited the growth of both gram-negative (MIC, 0.08 to 3.00 mM) and gram-positive (MIC, 0.94 to 2.67 mM) bacteria. Small, anionic, and charge-neutralizing propeptide fragments of zymogens form a new class of host-derived antimicrobial peptides important in innate defense.

Full Text

The Full Text of this article is available as a PDF (111.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agerberth B., Boman A., Andersson M., Jörnvall H., Mutt V., Boman H. G. Isolation of three antibacterial peptides from pig intestine: gastric inhibitory polypeptide (7-42), diazepam-binding inhibitor (32-86) and a novel factor, peptide 3910. Eur J Biochem. 1993 Sep 1;216(2):623–629. doi: 10.1111/j.1432-1033.1993.tb18182.x. [DOI] [PubMed] [Google Scholar]
  2. Atwal O. S., Viel L., Minhas K. J. An uptake of cationized ferritin by alveolar type I cells in airway-instilled goat lung: distribution of anionic sites on the epithelial surface. J Submicrosc Cytol Pathol. 1990 Jul;22(3):425–432. [PubMed] [Google Scholar]
  3. Bevins C. L., Zasloff M. Peptides from frog skin. Annu Rev Biochem. 1990;59:395–414. doi: 10.1146/annurev.bi.59.070190.002143. [DOI] [PubMed] [Google Scholar]
  4. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  5. Brogden K. A., De Lucca A. J., Bland J., Elliott S. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):412–416. doi: 10.1073/pnas.93.1.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brogden K. A. Ovine pulmonary surfactant induces killing of Pasteurella haemolytica, Escherichia coli, and Klebsiella pneumoniae by normal serum. Infect Immun. 1992 Dec;60(12):5182–5189. doi: 10.1128/iai.60.12.5182-5189.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diamond G., Jones D. E., Bevins C. L. Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4596–4600. doi: 10.1073/pnas.90.10.4596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellison R. T., 3rd, Boose D., LaForce F. M. Isolation of an antibacterial peptide from human lung lavage fluid. J Infect Dis. 1985 Jun;151(6):1123–1129. doi: 10.1093/infdis/151.6.1123. [DOI] [PubMed] [Google Scholar]
  9. Felsted R. L., Kramer K. J., Law J. H., Berger E., Kafatos F. C. Cocoonase. IV. Mechanism of activation of prococoonase from Antheraea polyphemus. J Biol Chem. 1973 May 10;248(9):3012–3020. [PubMed] [Google Scholar]
  10. Ganz T., Lehrer R. I. Defensins. Curr Opin Immunol. 1994 Aug;6(4):584–589. doi: 10.1016/0952-7915(94)90145-7. [DOI] [PubMed] [Google Scholar]
  11. Hoffmann W., Richter K., Kreil G. A novel peptide designated PYLa and its precursor as predicted from cloned mRNA of Xenopus laevis skin. EMBO J. 1983;2(5):711–714. doi: 10.1002/j.1460-2075.1983.tb01489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LaForce F. M., Boose D. S. Effect of zinc and phosphate on an antibacterial peptide isolated from lung lavage. Infect Immun. 1984 Sep;45(3):692–696. doi: 10.1128/iai.45.3.692-696.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lehrer R. I., Ganz T., Szklarek D., Selsted M. E. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest. 1988 Jun;81(6):1829–1835. doi: 10.1172/JCI113527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martin E., Ganz T., Lehrer R. I. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol. 1995 Aug;58(2):128–136. doi: 10.1002/jlb.58.2.128. [DOI] [PubMed] [Google Scholar]
  15. Michaelson D., Rayner J., Couto M., Ganz T. Cationic defensins arise from charge-neutralized propeptides: a mechanism for avoiding leukocyte autocytotoxicity? J Leukoc Biol. 1992 Jun;51(6):634–639. doi: 10.1002/jlb.51.6.634. [DOI] [PubMed] [Google Scholar]
  16. Moore K. S., Bevins C. L., Tomassini N., Huttner K. M., Sadler K., Moreira J. E., Reynolds J., Zasloff M. A novel peptide-producing cell in Xenopus: multinucleated gastric mucosal cell strikingly similar to the granular gland of the skin. J Histochem Cytochem. 1992 Mar;40(3):367–378. doi: 10.1177/40.3.1552176. [DOI] [PubMed] [Google Scholar]
  17. Neurath H., Walsh K. A. Role of proteolytic enzymes in biological regulation (a review). Proc Natl Acad Sci U S A. 1976 Nov;73(11):3825–3832. doi: 10.1073/pnas.73.11.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nicolas P., Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol. 1995;49:277–304. doi: 10.1146/annurev.mi.49.100195.001425. [DOI] [PubMed] [Google Scholar]
  19. Ouellette A. J., Selsted M. E. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J. 1996 Sep;10(11):1280–1289. doi: 10.1096/fasebj.10.11.8836041. [DOI] [PubMed] [Google Scholar]
  20. Panyutich A. V., Hiemstra P. S., van Wetering S., Ganz T. Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol. 1995 Mar;12(3):351–357. doi: 10.1165/ajrcmb.12.3.7873202. [DOI] [PubMed] [Google Scholar]
  21. Panyutich A. V., Szold O., Poon P. H., Tseng Y., Ganz T. Identification of defensin binding to C1 complement. FEBS Lett. 1994 Dec 19;356(2-3):169–173. doi: 10.1016/0014-5793(94)01261-x. [DOI] [PubMed] [Google Scholar]
  22. Panyutich A., Ganz T. Activated alpha 2-macroglobulin is a principal defensin-binding protein. Am J Respir Cell Mol Biol. 1991 Aug;5(2):101–106. doi: 10.1165/ajrcmb/5.2.101. [DOI] [PubMed] [Google Scholar]
  23. Selsted M. E., Miller S. I., Henschen A. H., Ouellette A. J. Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol. 1992 Aug;118(4):929–936. doi: 10.1083/jcb.118.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sherman M. P., Ganz T. Host defense in pulmonary alveoli. Annu Rev Physiol. 1992;54:331–350. doi: 10.1146/annurev.ph.54.030192.001555. [DOI] [PubMed] [Google Scholar]
  25. Smith J. J., Travis S. M., Greenberg E. P., Welsh M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 1996 Apr 19;85(2):229–236. doi: 10.1016/s0092-8674(00)81099-5. [DOI] [PubMed] [Google Scholar]
  26. Takabayashi T., Vannier E., Clark B. D., Margolis N. H., Dinarello C. A., Burke J. F., Gelfand J. A. A new biologic role for C3a and C3a desArg: regulation of TNF-alpha and IL-1 beta synthesis. J Immunol. 1996 May 1;156(9):3455–3460. [PubMed] [Google Scholar]
  27. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Haën C., Neurath H., Teller D. C. The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships. J Mol Biol. 1975 Feb 25;92(2):225–259. doi: 10.1016/0022-2836(75)90225-9. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES