Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Aug;41(8):1649–1657. doi: 10.1128/aac.41.8.1649

Structure-activity relationship of carbacephalosporins and cephalosporins: antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells.

N J Snyder 1, L B Tabas 1, D M Berry 1, D C Duckworth 1, D O Spry 1, A H Dantzig 1
PMCID: PMC163979  PMID: 9257735

Abstract

An intestinal proton-dependent peptide transporter located on the lumenal surface of the enterocyte is responsible for the uptake of many orally absorbed beta-lactam antibiotics. Both cephalexin and loracarbef are transported by this mechanism into the human intestinal Caco-2 cell line. Forty-seven analogs of the carbacephalosporin loracarbef and the cephalosporin cephalexin were prepared to evaluate the structural features necessary for uptake by this transport carrier. Compounds were evaluated for their antibacterial activities and for their ability to inhibit 1 mM cephalexin uptake and, subsequently, uptake into Caco-2 cells. Three clinically evaluated orally absorbed carbacephems were taken up by Caco-2 cells, consistent with their excellent bioavailability in humans. Although the carrier preferred the L stereoisomer, these compounds lacked antibacterial activity and were hydrolyzed intracellularly in Caco-2 cells. Compounds modified at the 3 position of cephalexin and loracarbef with a cyclopropyl or a trifluoromethyl group inhibited cephalexin uptake. Analogs with lipophilic groups on the primary amine of the side chain inhibited cephalexin uptake, retained activity against gram-positive bacteria but lost activity against gram-negative bacteria. Substitution of the phenylglycl side chain with phenylacetyl side chains gave similar results. Compounds which lacked an aromatic ring in the side chain inhibited cephalexin uptake but lost all antibacterial activity. Thus, the phenylglycl side chain is not absolutely required for uptake. Different structural features are required for antibacterial activity and for being a substrate of the transporter. Competition studies with cephalexin indicate that human intestinal Caco-2 cells may be a useful model system for initially guiding structure-activity relationships for the rational design of new oral agents.

Full Text

The Full Text of this article is available as a PDF (217.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alburn H. E., Clark R. E., Fletcher H., 3rd, Grant N. H. Synthesis of new broad-spectrum aminoalicyclic penicillins. Antimicrob Agents Chemother (Bethesda) 1967;7:586–589. [PubMed] [Google Scholar]
  2. Amidon G. L., Lee H. J. Absorption of peptide and peptidomimetic drugs. Annu Rev Pharmacol Toxicol. 1994;34:321–341. doi: 10.1146/annurev.pa.34.040194.001541. [DOI] [PubMed] [Google Scholar]
  3. Bai P. F., Subramanian P., Mosberg H. I., Amidon G. L. Structural requirements for the intestinal mucosal-cell peptide transporter: the need for N-terminal alpha-amino group. Pharm Res. 1991 May;8(5):593–599. doi: 10.1023/a:1015848522228. [DOI] [PubMed] [Google Scholar]
  4. Berteloot A., Khan A. H., Ramaswamy K. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycyl-L-phenylalanine. Biochim Biophys Acta. 1981 Dec 7;649(2):179–188. doi: 10.1016/0005-2736(81)90405-3. [DOI] [PubMed] [Google Scholar]
  5. Brown R. F., Kinnick M. D., Morin J. M., Jr, Vasileff R. T., Counter F. T., Davidson E. O., Ensminger P. W., Eudaly J. A., Kasher J. S., Katner A. S. Synthesis and biological evaluation of a series of parenteral 3'-quaternary ammonium cephalosporins. J Med Chem. 1990 Aug;33(8):2114–2121. doi: 10.1021/jm00170a011. [DOI] [PubMed] [Google Scholar]
  6. Catnach S. M., Fairclough P. D., Hammond S. M. Intestinal absorption of peptide drugs: advances in our understanding and clinical implications. Gut. 1994 Apr;35(4):441–444. doi: 10.1136/gut.35.4.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dantzig A. H., Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim Biophys Acta. 1990 Sep 7;1027(3):211–217. doi: 10.1016/0005-2736(90)90309-c. [DOI] [PubMed] [Google Scholar]
  8. Dantzig A. H., Duckworth D. C., Tabas L. B. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells. Biochim Biophys Acta. 1994 Apr 20;1191(1):7–13. doi: 10.1016/0005-2736(94)90226-7. [DOI] [PubMed] [Google Scholar]
  9. Dantzig A. H., Tabas L. B., Bergin L. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake. Biochim Biophys Acta. 1992 Dec 9;1112(2):167–173. doi: 10.1016/0005-2736(92)90388-3. [DOI] [PubMed] [Google Scholar]
  10. DeSante K. A., Zeckel M. L. Pharmacokinetic profile of loracarbef. Am J Med. 1992 Jun 22;92(6A):16S–19S. doi: 10.1016/0002-9343(92)90602-8. [DOI] [PubMed] [Google Scholar]
  11. Ganapathy V., Burckhardt G., Leibach F. H. Peptide transport in rabbit intestinal brush-border membrane vesicles studied with a potential-sensitive dye. Biochim Biophys Acta. 1985 Jun 27;816(2):234–240. doi: 10.1016/0005-2736(85)90490-0. [DOI] [PubMed] [Google Scholar]
  12. Ganapathy V., Leibach F. H. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. J Biol Chem. 1983 Dec 10;258(23):14189–14192. [PubMed] [Google Scholar]
  13. Ganapathy V., Mendicino J. F., Leibach F. H. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem. 1981 Jan 10;256(1):118–124. [PubMed] [Google Scholar]
  14. Gazzola G. C., Dall'Asta V., Franchi-Gazzola R., White M. F. The cluster-tray method for rapid measurement of solute fluxes in adherent cultured cells. Anal Biochem. 1981 Aug;115(2):368–374. doi: 10.1016/0003-2697(81)90019-1. [DOI] [PubMed] [Google Scholar]
  15. Hansch C., Björkroth J. P., Leo A. Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci. 1987 Sep;76(9):663–687. doi: 10.1002/jps.2600760902. [DOI] [PubMed] [Google Scholar]
  16. Hutt A. J., O'Grady J. Drug chirality: a consideration of the significance of the stereochemistry of antimicrobial agents. J Antimicrob Chemother. 1996 Jan;37(1):7–32. doi: 10.1093/jac/37.1.7. [DOI] [PubMed] [Google Scholar]
  17. Li J., Hidalgo I. J. Molecular modeling study of structural requirements for the oligopeptide transporter. J Drug Target. 1996;4(1):9–17. doi: 10.3109/10611869609046256. [DOI] [PubMed] [Google Scholar]
  18. Lüthy R., Münch R., Blaser J., Bhend H., Siegenthaler W. Human pharmacology of cefotaxime (HR 756), a new cephalosporin. Antimicrob Agents Chemother. 1979 Aug;16(2):127–133. doi: 10.1128/aac.16.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meyers B. R., Ribner B., Yancovitz S., Hirschman S. Z. Pharmacological studies with cefamandole in human volunteers. Antimicrob Agents Chemother. 1976 Jan;9(1):140–144. doi: 10.1128/aac.9.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oh D. M., Sinko P. J., Amidon G. L. Characterization of the oral absorption of some beta-lactams: effect of the alpha-amino side chain group. J Pharm Sci. 1993 Sep;82(9):897–900. doi: 10.1002/jps.2600820907. [DOI] [PubMed] [Google Scholar]
  21. Rajendran V. M., Berteloot A., Ramaswamy K. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles. Am J Physiol. 1985 Jun;248(6 Pt 1):G682–G686. doi: 10.1152/ajpgi.1985.248.6.G682. [DOI] [PubMed] [Google Scholar]
  22. Rajendran V. M., Harig J. M., Ramaswamy K. Characteristics of glycyl-L-proline transport in intestinal brush-border membrane vesicles. Am J Physiol. 1987 Feb;252(2 Pt 1):G281–G286. doi: 10.1152/ajpgi.1987.252.2.G281. [DOI] [PubMed] [Google Scholar]
  23. Said H. M., Ghishan F. K., Redha R. Transport of glycyl-L-proline in intestinal brush-border membrane vesicles of the suckling rat: characteristics and maturation. Biochim Biophys Acta. 1988 Jun 22;941(2):232–240. doi: 10.1016/0005-2736(88)90184-8. [DOI] [PubMed] [Google Scholar]
  24. Sakane K., Inamoto Y., Takaya T. [A new oral cephem, cefdinir: its structure-activity relationships and biological profile]. Jpn J Antibiot. 1992 Aug;45(8):909–925. [PubMed] [Google Scholar]
  25. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  26. Spry D. O., Snyder N. J., Kasher J. S. C(3)-cyclopropyl cephems and carbacephems. J Antibiot (Tokyo) 1989 Nov;42(11):1653–1660. doi: 10.7164/antibiotics.42.1653. [DOI] [PubMed] [Google Scholar]
  27. Tamai I., Ling H. Y., Timbul S. M., Nishikido J., Tsuji A. Stereospecific absorption and degradation of cephalexin. J Pharm Pharmacol. 1988 May;40(5):320–324. doi: 10.1111/j.2042-7158.1988.tb05259.x. [DOI] [PubMed] [Google Scholar]
  28. Tamura K., Bhatnagar P. K., Takata J. S., Lee C. P., Smith P. L., Borchardt R. T. Metabolism, uptake, and transepithelial transport of the diastereomers of Val-Val in the human intestinal cell line, Caco-2. Pharm Res. 1996 Aug;13(8):1213–1218. doi: 10.1023/a:1016068421243. [DOI] [PubMed] [Google Scholar]
  29. Tamura K., Lee C. P., Smith P. L., Borchardt R. T. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2. Pharm Res. 1996 Nov;13(11):1663–1667. doi: 10.1023/a:1016436606183. [DOI] [PubMed] [Google Scholar]
  30. Wenzel U., Thwaites D. T., Daniel H. Stereoselective uptake of beta-lactam antibiotics by the intestinal peptide transporter. Br J Pharmacol. 1995 Dec;116(7):3021–3027. doi: 10.1111/j.1476-5381.1995.tb15958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilson D., Barry J. A., Ramaswamy K. Characteristics of tripeptide transport in human jejunal brush-border membrane vesicles. Biochim Biophys Acta. 1989 Nov 17;986(1):123–129. doi: 10.1016/0005-2736(89)90280-0. [DOI] [PubMed] [Google Scholar]
  32. Yoshikawa T., Muranushi N., Yoshida M., Oguma T., Hirano K., Yamada H. Transport characteristics of ceftibuten (7432-S), a new oral cephem, in rat intestinal brush-border membrane vesicles: proton-coupled and stereoselective transport of ceftibuten. Pharm Res. 1989 Apr;6(4):302–307. doi: 10.1023/a:1015994323639. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES