Abstract
Levofloxacin is the L isomer of ofloxacin, a racemic mixture in which the L stereochemical form carries the antimicrobial activity. Levofloxacin is more active than former quinolones against gram-positive bacteria, making it potentially useful against such pathogens. In this study, levofloxacin was compared to ciprofloxacin, flucloxacillin, and vancomycin for the treatment of experimental endocarditis due to two methicillin-susceptible Staphylococcus aureus (MSSA) and two methicillin-resistant S. aureus (MRSA) isolates. The four test organisms were susceptible to ciprofloxacin, the levofloxacin MICs for the organisms were low (0.12 to 0.25 mg/liter), and the organisms were killed in vitro by drug concentrations simulating both the peak and trough levels achieved in human serum (5 and 0.5 mg/liter, respectively) during levofloxacin therapy. Rats with aortic endocarditis were treated for 3 days. Antibiotics were injected with a programmable pump to simulate the kinetics of either levofloxacin (350 mg orally once a day), ciprofloxacin (750 mg orally twice a day), flucloxacillin (2 g intravenously four times a day), or vancomycin (1 g intravenously twice a day). Levofloxacin tended to be superior to ciprofloxacin in therapeutic experiments (P = 0.08). More importantly, levofloxacin did not select for resistance in the animals, in contrast to ciprofloxacin. The lower propensity of levofloxacin than ciprofloxacin to select for quinolone resistance was also clearly demonstrated in vitro. Finally, the effectiveness of this simulation of oral levofloxacin therapy was at least equivalent to that of standard treatment for MSSA or MRSA endocarditis with either flucloxacillin or vancomycin. This is noteworthy, because oral antibiotics are not expected to succeed in the treatment of severe staphylococcal infections. These good results obtained with animals suggest that levofloxacin might deserve consideration for further study in the treatment of infections due to ciprofloxacin-susceptible staphylococci in humans.
Full Text
The Full Text of this article is available as a PDF (296.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blouin R. A., Bauer L. A., Miller D. D., Record K. E., Griffen W. O., Jr Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother. 1982 Apr;21(4):575–580. doi: 10.1128/aac.21.4.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borner K., Höffken G., Lode H., Koeppe P., Prinzing C., Glatzel P., Wiley R., Olschewski P., Sievers B., Reinitz D. Pharmacokinetics of ciprofloxacin in healthy volunteers after oral and intravenous administration. Eur J Clin Microbiol. 1986 Apr;5(2):179–186. doi: 10.1007/BF02013983. [DOI] [PubMed] [Google Scholar]
- Davis R., Bryson H. M. Levofloxacin. A review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs. 1994 Apr;47(4):677–700. doi: 10.2165/00003495-199447040-00008. [DOI] [PubMed] [Google Scholar]
- Dholakia N., Rolston K. V., Ho D. H., LeBlanc B., Bodey G. P. Susceptibilities of bacterial isolates from patients with cancer to levofloxacin and other quinolones. Antimicrob Agents Chemother. 1994 Apr;38(4):848–852. doi: 10.1128/aac.38.4.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrero L., Cameron B., Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Jul;39(7):1554–1558. doi: 10.1128/aac.39.7.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fluckiger U., Francioli P., Blaser J., Glauser M. P., Moreillon P. Role of amoxicillin serum levels for successful prophylaxis of experimental endocarditis due to tolerant streptococci. J Infect Dis. 1994 Jun;169(6):1397–1400. doi: 10.1093/infdis/169.6.1397. [DOI] [PubMed] [Google Scholar]
- Francioli P., Etienne J., Hoigné R., Thys J. P., Gerber A. Treatment of streptococcal endocarditis with a single daily dose of ceftriaxone sodium for 4 weeks. Efficacy and outpatient treatment feasibility. JAMA. 1992 Jan 8;267(2):264–267. [PubMed] [Google Scholar]
- Francioli P., Ruch W., Stamboulian D. Treatment of streptococcal endocarditis with a single daily dose of ceftriaxone and netilmicin for 14 days: a prospective multicenter study. Clin Infect Dis. 1995 Dec;21(6):1406–1410. doi: 10.1093/clinids/21.6.1406. [DOI] [PubMed] [Google Scholar]
- Frank U., Schmidt-Eisenlohr E., Schlosser V., Spillner G., Schindler M., Daschner F. D. Concentrations of flucloxacillin in heart valves and subcutaneous and muscle tissues of patients undergoing open-heart surgery. Antimicrob Agents Chemother. 1988 Jun;32(6):930–931. doi: 10.1128/aac.32.6.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu K. P., Lafredo S. C., Foleno B., Isaacson D. M., Barrett J. F., Tobia A. J., Rosenthale M. E. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin), an optically active ofloxacin. Antimicrob Agents Chemother. 1992 Apr;36(4):860–866. doi: 10.1128/aac.36.4.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin S. D., Gallis H. A., Chow A. T., Wong F. A., Flor S. C., Bartlett J. A. Pharmacokinetics and safety of levofloxacin in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother. 1994 Apr;38(4):799–804. doi: 10.1128/aac.38.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayakawa I., Atarashi S., Yokohama S., Imamura M., Sakano K., Furukawa M. Synthesis and antibacterial activities of optically active ofloxacin. Antimicrob Agents Chemother. 1986 Jan;29(1):163–164. doi: 10.1128/aac.29.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Héraïef E., Glauser M. P., Freedman L. R. Natural history of aortic valve endocarditis in rats. Infect Immun. 1982 Jul;37(1):127–131. doi: 10.1128/iai.37.1.127-131.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odio C., McCracken G. H., Jr, Nelson J. D. Nephrotoxicity associated with vancomycin-aminoglycoside therapy in four children. J Pediatr. 1984 Sep;105(3):491–493. doi: 10.1016/s0022-3476(84)80036-0. [DOI] [PubMed] [Google Scholar]
- Piddock L. J. New quinolones and gram-positive bacteria. Antimicrob Agents Chemother. 1994 Feb;38(2):163–169. doi: 10.1128/aac.38.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piercy E. A., Barbaro D., Luby J. P., Mackowiak P. A. Ciprofloxacin for methicillin-resistant Staphylococcus aureus infections. Antimicrob Agents Chemother. 1989 Jan;33(1):128–130. doi: 10.1128/aac.33.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders C. C., Sanders W. E., Jr, Thomson K. S. Fluoroquinolone resistance in staphylococci: new challenges. Eur J Clin Microbiol Infect Dis. 1995;14 (Suppl 1):S6–11. [PubMed] [Google Scholar]
- Sanders W. E., Jr Efficacy, safety, and potential economic benefits of oral ciprofloxacin in the treatment of infections. Rev Infect Dis. 1988 May-Jun;10(3):528–543. doi: 10.1093/clinids/10.3.528. [DOI] [PubMed] [Google Scholar]
- Stein G. E. Pharmacokinetics and pharmacodynamics of newer fluoroquinolones. Clin Infect Dis. 1996 Dec;23 (Suppl 1):S19–S24. doi: 10.1093/clinids/23.supplement_1.s19. [DOI] [PubMed] [Google Scholar]
- Takenouchi T., Ishii C., Sugawara M., Tokue Y., Ohya S. Incidence of various gyrA mutants in 451 Staphylococcus aureus strains isolated in Japan and their susceptibilities to 10 fluoroquinolones. Antimicrob Agents Chemother. 1995 Jul;39(7):1414–1418. doi: 10.1128/aac.39.7.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Une T., Fujimoto T., Sato K., Osada Y. In vitro activity of DR-3355, an optically active ofloxacin. Antimicrob Agents Chemother. 1988 Sep;32(9):1336–1340. doi: 10.1128/aac.32.9.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson W. R., Karchmer A. W., Dajani A. S., Taubert K. A., Bayer A., Kaye D., Bisno A. L., Ferrieri P., Shulman S. T., Durack D. T. Antibiotic treatment of adults with infective endocarditis due to streptococci, enterococci, staphylococci, and HACEK microorganisms. American Heart Association. JAMA. 1995 Dec 6;274(21):1706–1713. [PubMed] [Google Scholar]
- Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol. 1990 Dec;172(12):6942–6949. doi: 10.1128/jb.172.12.6942-6949.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]