Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Aug;41(8):1686–1692. doi: 10.1128/aac.41.8.1686

Hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi as a target for structure-based inhibitor design: crystallization and inhibition studies with purine analogs.

A E Eakin 1, A Guerra 1, P J Focia 1, J Torres-Martinez 1, S P Craig 3rd 1
PMCID: PMC163986  PMID: 9257742

Abstract

The hypoxanthine phosphoribosyltransferase (HPRT) from Trypanosoma cruzi is a potential target for enzyme structure-based inhibitor design, based on previous studies which indicate that these parasites lack the metabolic enzymes required for de novo synthesis of purine nucleotides. By using a bacterial complement selection system, 59 purine analogs were assayed for their interaction with the HPRTs from T. cruzi and Homo sapiens. Eight compounds were identified from the bacterial assay to have an affinity for the trypanosomal enzyme. Inhibition constants for four of these compounds against purified recombinant trypanosomal and human HPRTs were determined and compared. The results confirm that the recombinant system can be used to identify compounds which have affinity for the trypanosomal HPRT. Furthermore, the results provide evidence for the importance of chemical modifications at positions 6 and 8 of the purine ring in the binding of these compounds to the HPRTs. An accurate three-dimensional structure of the trypanosomal enzyme will greatly enhance our understanding of the interactions between HPRTs and these compounds. Toward this end, crystallization conditions for the trypanosomal HPRT and preliminary analysis of X-ray diffraction data to a resolution of 2 A is reported. These results represent significant progress toward a structure-based approach to the design of inhibitors of the HPRT of trypanosomes with the long-range goal of developing new drugs for the treatment of Chagas' disease.

Full Text

The Full Text of this article is available as a PDF (334.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. E., Ullman B. Molecular characterization and overexpression of the hypoxanthine-guanine phosphoribosyltransferase gene from Trypanosoma cruzi. Mol Biochem Parasitol. 1994 Jun;65(2):233–245. doi: 10.1016/0166-6851(94)90075-2. [DOI] [PubMed] [Google Scholar]
  2. Appelt K., Bacquet R. J., Bartlett C. A., Booth C. L., Freer S. T., Fuhry M. A., Gehring M. R., Herrmann S. M., Howland E. F., Janson C. A. Design of enzyme inhibitors using iterative protein crystallographic analysis. J Med Chem. 1991 Jul;34(7):1925–1934. doi: 10.1021/jm00111a001. [DOI] [PubMed] [Google Scholar]
  3. Berens R. L., Marr J. J., LaFon S. W., Nelson D. J. Purine metabolism in Trypanosoma cruzi. Mol Biochem Parasitol. 1981 Jul;3(3):187–196. doi: 10.1016/0166-6851(81)90049-9. [DOI] [PubMed] [Google Scholar]
  4. Craig S. P., 3rd, Eakin A. E. Purine salvage enzymes of parasites as targets for structure-based inhibitor design. Parasitol Today. 1997 Jun;13(6):238–241. doi: 10.1016/s0169-4758(97)01042-9. [DOI] [PubMed] [Google Scholar]
  5. Craig S. P., 3rd, Yuan L., Kuntz D. A., McKerrow J. H., Wang C. C. High level expression in Escherichia coli of soluble, enzymatically active schistosomal hypoxanthine/guanine phosphoribosyltransferase and trypanosomal ornithine decarboxylase. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2500–2504. doi: 10.1073/pnas.88.6.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craig S. P., Castro C., Eakin A. E., Castañeda M. Trypanosoma (Schizotrypanum) cruzi: repetitive DNA sequence evolution in three geographically distinct isolates. Comp Biochem Physiol B. 1990;95(4):657–662. doi: 10.1016/0305-0491(90)90301-9. [DOI] [PubMed] [Google Scholar]
  7. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Clercq E. Toward improved anti-HIV chemotherapy: therapeutic strategies for intervention with HIV infections. J Med Chem. 1995 Jul 7;38(14):2491–2517. doi: 10.1021/jm00014a001. [DOI] [PubMed] [Google Scholar]
  9. Eads J. C., Scapin G., Xu Y., Grubmeyer C., Sacchettini J. C. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell. 1994 Jul 29;78(2):325–334. doi: 10.1016/0092-8674(94)90301-8. [DOI] [PubMed] [Google Scholar]
  10. Eakin A. E., Nieves-Alicea R., Tosado-Acevedo R., Chin M. S., Wang C. C., Craig S. P., 3rd Comparative complement selection in bacteria enables screening for lead compounds targeted to a purine salvage enzyme of parasites. Antimicrob Agents Chemother. 1995 Mar;39(3):620–625. doi: 10.1128/AAC.39.3.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gallerano R. H., Marr J. J., Sosa R. R. Therapeutic efficacy of allopurinol in patients with chronic Chagas' disease. Am J Trop Med Hyg. 1990 Aug;43(2):159–166. doi: 10.4269/ajtmh.1990.43.159. [DOI] [PubMed] [Google Scholar]
  12. Giacomello A., Salerno C. Human hypoxanthine-guanine phosphoribosyltransferase. Steady state kinetics of the forward and reverse reactions. J Biol Chem. 1978 Sep 10;253(17):6038–6044. [PubMed] [Google Scholar]
  13. Gutteridge W. E., Gaborak M. A re-examination of purine and pyrimidine synthesis in the three main forms of Trypanosoma cruzi. Int J Biochem. 1979;10(5):415–422. doi: 10.1016/0020-711x(79)90065-x. [DOI] [PubMed] [Google Scholar]
  14. Hammond D. J., Gutteridge W. E. Purine and pyrimidine metabolism in the Trypanosomatidae. Mol Biochem Parasitol. 1984 Nov;13(3):243–261. doi: 10.1016/0166-6851(84)90117-8. [DOI] [PubMed] [Google Scholar]
  15. Hartwick R. A., Krstulovic A. M., Brown P. R. Identification and quantitation of nucleosides, bases and other UV-absorbing compounds in serum, using reversed-phase high-performance liquid chromatography. II. Evaluation of human sera. J Chromatogr. 1979 Dec 30;186:659–676. doi: 10.1016/s0021-9673(00)95286-5. [DOI] [PubMed] [Google Scholar]
  16. Jadhav A. L., Townsend L. B., Nelson J. A. Inhibition of hypoxanthine-guanine phosphoribosyl transferase. Biochem Pharmacol. 1979 Apr 1;28(7):1057–1062. doi: 10.1016/0006-2952(79)90303-4. [DOI] [PubMed] [Google Scholar]
  17. Jochimsen B., Nygaard P., Vestergaard T. Location on the chromosome of Escherichia coli of genes governing purine metabolism. Adenosine deaminase (add), guanosine kinase (gsk) and hypoxanthine phosphoribosyltransferase (hpt). Mol Gen Genet. 1975 Dec 30;143(1):85–91. doi: 10.1007/BF00269424. [DOI] [PubMed] [Google Scholar]
  18. Marr J. J., Berens R. L. Pyrazolopyrimidine metabolism in the pathogenic trypanosomatidae. Mol Biochem Parasitol. 1983 Apr;7(4):339–356. doi: 10.1016/0166-6851(83)90016-6. [DOI] [PubMed] [Google Scholar]
  19. Marr J. J. Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J Lab Clin Med. 1991 Aug;118(2):111–119. [PubMed] [Google Scholar]
  20. Schramm V. L., Horenstein B. A., Kline P. C. Transition state analysis and inhibitor design for enzymatic reactions. J Biol Chem. 1994 Jul 15;269(28):18259–18262. [PubMed] [Google Scholar]
  21. Somoza J. R., Chin M. S., Focia P. J., Wang C. C., Fletterick R. J. Crystal structure of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from the protozoan parasite Tritrichomonas foetus. Biochemistry. 1996 Jun 4;35(22):7032–7040. doi: 10.1021/bi953072p. [DOI] [PubMed] [Google Scholar]
  22. Ullman B., Carter D. Hypoxanthine-guanine phosphoribosyltransferase as a therapeutic target in protozoal infections. Infect Agents Dis. 1995 Mar;4(1):29–40. [PubMed] [Google Scholar]
  23. Varney M. D., Marzoni G. P., Palmer C. L., Deal J. G., Webber S., Welsh K. M., Bacquet R. J., Bartlett C. A., Morse C. A., Booth C. L. Crystal-structure-based design and synthesis of benz[cd]indole-containing inhibitors of thymidylate synthase. J Med Chem. 1992 Feb 21;35(4):663–676. doi: 10.1021/jm00082a006. [DOI] [PubMed] [Google Scholar]
  24. Wolfenden R. Transition state analogues for enzyme catalysis. Nature. 1969 Aug 16;223(5207):704–705. doi: 10.1038/223704a0. [DOI] [PubMed] [Google Scholar]
  25. Yuan L., Craig S. P., 3rd, McKerrow J. H., Wang C. C. Steady-state kinetics of the schistosomal hypoxanthine-guanine phosphoribosyltransferase. Biochemistry. 1992 Jan 28;31(3):806–810. doi: 10.1021/bi00118a024. [DOI] [PubMed] [Google Scholar]
  26. Yuan L., Craig S. P., McKerrow J. H., Wang C. C. The hypoxanthine-guanine phosphoribosyltransferase of Schistosoma mansoni. Further characterization and gene expression in Escherichia coli. J Biol Chem. 1990 Aug 15;265(23):13528–13532. [PubMed] [Google Scholar]
  27. Yuan L., Wu C. S., Craig S. P., 3rd, Liu A. F., Wang C. C. Comparing the human and schistosomal hypoxanthine-guanine phosphoribosyltransferases by circular dichroism. Biochim Biophys Acta. 1993 Mar 5;1162(1-2):10–16. doi: 10.1016/0167-4838(93)90121-7. [DOI] [PubMed] [Google Scholar]
  28. de Castro S. L. The challenge of Chagas' disease chemotherapy: an update of drugs assayed against Trypanosoma cruzi. Acta Trop. 1993 Apr;53(2):83–98. doi: 10.1016/0001-706x(93)90021-3. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES