Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Aug;41(8):1721–1724. doi: 10.1128/aac.41.8.1721

Altered permeability and beta-lactam resistance in a mutant of Mycobacterium smegmatis.

S Mukhopadhyay 1, P Chakrabarti 1
PMCID: PMC163992  PMID: 9257748

Abstract

Beta-lactam resistance in mycobacteria results from an interplay between the following: (i) beta-lactamase production, (ii) affinity of the penicillin-binding proteins (PBPs) for the drugs, and (iii) permeation of the drugs. A laboratory mutant of Mycobacterium smegmatis was studied in order to evaluate the roles of these factors in beta-lactam resistance. Mutant M13 was between 7- and 78-fold more resistant than the wild type to cephaloridine, cefoxitin, cefazolin, cefamandole, and cephalothin. Increased beta-lactamase activity toward these antibiotics was not observed in the mutant. The PBP profiles of the wild type and M13 were comparable. However, the affinities of PBP 1 for the beta-lactams tested were lower for the mutant than for the wild type. The permeation of the drugs measured in intact cells was lower for M13 than for the parent strain. The liposome swelling technique, which could be used for cephaloridine, also supported this view. Reduced permeation was not restricted to the beta-lactams alone. Glycine uptake was also lower in M13. Taken together, the results suggest that decreased affinities of PBP 1 for beta-lactams, combined with the decreased permeability of the cell wall of the mutant, lead to the development of high-level acquired beta-lactam resistance.

Full Text

The Full Text of this article is available as a PDF (205.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu J., Chattopadhyay R., Kundu M., Chakrabarti P. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J Bacteriol. 1992 Jul;174(14):4829–4832. doi: 10.1128/jb.174.14.4829-4832.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brennan P. J., Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63. doi: 10.1146/annurev.bi.64.070195.000333. [DOI] [PubMed] [Google Scholar]
  3. Casal M., Rodriguez F., Benavente M., Luna M. In vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium fortuitum and Mycobacterium chelonei to augmentin. Eur J Clin Microbiol. 1986 Aug;5(4):453–454. doi: 10.1007/BF02075706. [DOI] [PubMed] [Google Scholar]
  4. Chambers H. F., Moreau D., Yajko D., Miick C., Wagner C., Hackbarth C., Kocagöz S., Rosenberg E., Hadley W. K., Nikaido H. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother. 1995 Dec;39(12):2620–2624. doi: 10.1128/aac.39.12.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cole S. T. Mycobacterium tuberculosis: drug-resistance mechanisms. Trends Microbiol. 1994 Oct;2(10):411–415. doi: 10.1016/0966-842x(94)90621-1. [DOI] [PubMed] [Google Scholar]
  6. Fattorini L., Orefici G., Jin S. H., Scardaci G., Amicosante G., Franceschini N., Chopra I. Resistance to beta-lactams in Mycobacterium fortuitum. Antimicrob Agents Chemother. 1992 May;36(5):1068–1072. doi: 10.1128/aac.36.5.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iseman M. D. Evolution of drug-resistant tuberculosis: a tale of two species. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2428–2429. doi: 10.1073/pnas.91.7.2428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jarlier V., Gutmann L., Nikaido H. Interplay of cell wall barrier and beta-lactamase activity determines high resistance to beta-lactam antibiotics in Mycobacterium chelonae. Antimicrob Agents Chemother. 1991 Sep;35(9):1937–1939. doi: 10.1128/aac.35.9.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jarlier V., Nikaido H. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol. 1990 Mar;172(3):1418–1423. doi: 10.1128/jb.172.3.1418-1423.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaneda S., Yabu K. Purification and some properties of beta-lactamase from Mycobacterium smegmatis. Microbiol Immunol. 1983;27(2):191–193. doi: 10.1111/j.1348-0421.1983.tb03583.x. [DOI] [PubMed] [Google Scholar]
  11. Lee E. H., Collatz E., Trias J., Gutmann L. Diffusion of beta-lactam antibiotics into proteoliposomes reconstituted with outer membranes of isogenic imipenem-susceptible and -resistant strains of Enterobacter cloacae. J Gen Microbiol. 1992 Nov;138(11):2347–2351. doi: 10.1099/00221287-138-11-2347. [DOI] [PubMed] [Google Scholar]
  12. Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol. 1983 Jan;153(1):232–240. doi: 10.1128/jb.153.1.232-240.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nikaido H., Rosenberg E. Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol. 1983 Jan;153(1):241–252. doi: 10.1128/jb.153.1.241-252.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Trias J., Benz R. Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the channel mouth. J Biol Chem. 1993 Mar 25;268(9):6234–6240. [PubMed] [Google Scholar]
  15. Trias J., Benz R. Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol. 1994 Oct;14(2):283–290. doi: 10.1111/j.1365-2958.1994.tb01289.x. [DOI] [PubMed] [Google Scholar]
  16. Trias J., Jarlier V., Benz R. Porins in the cell wall of mycobacteria. Science. 1992 Nov 27;258(5087):1479–1481. doi: 10.1126/science.1279810. [DOI] [PubMed] [Google Scholar]
  17. Watt B., Edwards J. R., Rayner A., Grindey A. J., Harris G. In vitro activity of meropenem and imipenem against mycobacteria: development of a daily antibiotic dosing schedule. Tuber Lung Dis. 1992 Jun;73(3):134–136. doi: 10.1016/0962-8479(92)90145-A. [DOI] [PubMed] [Google Scholar]
  18. Wong C. S., Palmer G. S., Cynamon M. H. In-vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium kansasii to amoxycillin and ticarcillin in combination with clavulanic acid. J Antimicrob Chemother. 1988 Dec;22(6):863–866. doi: 10.1093/jac/22.6.863. [DOI] [PubMed] [Google Scholar]
  19. Zhang Y., Steingrube V. A., Wallace R. J., Jr beta-Lactamase inhibitors and the inducibility of the beta-lactamase of Mycobacterium tuberculosis. Am Rev Respir Dis. 1992 Mar;145(3):657–660. doi: 10.1164/ajrccm/145.3.657. [DOI] [PubMed] [Google Scholar]
  20. Zimmermann W., Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother. 1977 Sep;12(3):368–372. doi: 10.1128/aac.12.3.368. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES