Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Aug;41(8):1738–1742. doi: 10.1128/aac.41.8.1738

Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity.

D A Steinberg 1, M A Hurst 1, C A Fujii 1, A H Kung 1, J F Ho 1, F C Cheng 1, D J Loury 1, J C Fiddes 1
PMCID: PMC163996  PMID: 9257752

Abstract

Protegrin-1 (PG-1) is a cysteine-rich, 18-residue beta-sheet peptide isolated from porcine leukocytes with antimicrobial activity against a broad range of microorganisms. The MICs of PG-1 against representative gram-positive and gram-negative bacteria ranged from 0.12 to 2 microg/ml. At these levels, PG-1 was rapidly bactericidal in vitro, reducing the number of viable CFU of either methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa by more than three log units in less than 15 min. Resistance to PG-1 did not develop after 11 subculturings of P. aeruginosa or 18 subcultures of MRSA in Mueller-Hinton broth containing PG-1 at one-half the MIC. Under similar conditions of serial passage, the MICs of norfloxacin and gentamicin against P. aeruginosa increased 10 and 190 times, respectively. Similarly, the MIC of norfloxacin against MRSA increased 85 times. Immunocompetent mice inoculated intraperitoneally (i.p.) with P. aeruginosa or S. aureus exhibited 93 to 100% mortality in the vehicle control group compared with 0 to 27% mortality in animals that received a single i.p. injection of PG-1 (0.5 mg/kg of body weight). Mice inoculated with S. aureus by intravenous (i.v.) injection and dosed 0 to 60 min later with a single i.v. injection of PG-1 (5 mg/kg) had a mortality of 7 to 33%, compared to a mortality of 73 to 93% in the vehicle controls. In leukopenic mice inoculated i.v. with vancomycin-resistant Enterococcus faecium, mortality was 87% in the vehicle control group and 33% in animals that received a single i.v. injection of PG-1 (2.5 mg/kg). Taken together, these data indicate that PG-1 has potential for use as an antimicrobial agent in the treatment of local or systemic infections caused by clinically relevant pathogens.

Full Text

The Full Text of this article is available as a PDF (229.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agerberth B., Lee J. Y., Bergman T., Carlquist M., Boman H. G., Mutt V., Jörnvall H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem. 1991 Dec 18;202(3):849–854. doi: 10.1111/j.1432-1033.1991.tb16442.x. [DOI] [PubMed] [Google Scholar]
  2. Aumelas A., Mangoni M., Roumestand C., Chiche L., Despaux E., Grassy G., Calas B., Chavanieu A. Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem. 1996 May 1;237(3):575–583. doi: 10.1111/j.1432-1033.1996.0575p.x. [DOI] [PubMed] [Google Scholar]
  3. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  4. Fahrner R. L., Dieckmann T., Harwig S. S., Lehrer R. I., Eisenberg D., Feigon J. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol. 1996 Jul;3(7):543–550. doi: 10.1016/s1074-5521(96)90145-3. [DOI] [PubMed] [Google Scholar]
  5. Ganz T., Lehrer R. I. Defensins. Pharmacol Ther. 1995 May;66(2):191–205. doi: 10.1016/0163-7258(94)00076-f. [DOI] [PubMed] [Google Scholar]
  6. Hancock R. E., Falla T., Brown M. Cationic bactericidal peptides. Adv Microb Physiol. 1995;37:135–175. doi: 10.1016/s0065-2911(08)60145-9. [DOI] [PubMed] [Google Scholar]
  7. Hancock R. E. Peptide antibiotics. Lancet. 1997 Feb 8;349(9049):418–422. doi: 10.1016/S0140-6736(97)80051-7. [DOI] [PubMed] [Google Scholar]
  8. Harwig S. S., Kokryakov V. N., Swiderek K. M., Aleshina G. M., Zhao C., Lehrer R. I. Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett. 1995 Mar 27;362(1):65–69. doi: 10.1016/0014-5793(95)00210-z. [DOI] [PubMed] [Google Scholar]
  9. Harwig S. S., Swiderek K. M., Lee T. D., Lehrer R. I. Determination of disulphide bridges in PG-2, an antimicrobial peptide from porcine leukocytes. J Pept Sci. 1995 May-Jun;1(3):207–215. doi: 10.1002/psc.310010308. [DOI] [PubMed] [Google Scholar]
  10. Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kokryakov V. N., Harwig S. S., Panyutich E. A., Shevchenko A. A., Aleshina G. M., Shamova O. V., Korneva H. A., Lehrer R. I. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993 Jul 26;327(2):231–236. doi: 10.1016/0014-5793(93)80175-t. [DOI] [PubMed] [Google Scholar]
  12. Lehrer R. I., Rosenman M., Harwig S. S., Jackson R., Eisenhauer P. Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods. 1991 Mar 21;137(2):167–173. doi: 10.1016/0022-1759(91)90021-7. [DOI] [PubMed] [Google Scholar]
  13. Mangoni M. E., Aumelas A., Charnet P., Roumestand C., Chiche L., Despaux E., Grassy G., Calas B., Chavanieu A. Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett. 1996 Mar 25;383(1-2):93–98. doi: 10.1016/0014-5793(96)00236-0. [DOI] [PubMed] [Google Scholar]
  14. Nicolas P., Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol. 1995;49:277–304. doi: 10.1146/annurev.mi.49.100195.001425. [DOI] [PubMed] [Google Scholar]
  15. Qu X. D., Harwig S. S., Oren A. M., Shafer W. M., Lehrer R. I. Susceptibility of Neisseria gonorrhoeae to protegrins. Infect Immun. 1996 Apr;64(4):1240–1245. doi: 10.1128/iai.64.4.1240-1245.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Russell J. P., Diamond G., Tarver A. P., Scanlin T. F., Bevins C. L. Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect Immun. 1996 May;64(5):1565–1568. doi: 10.1128/iai.64.5.1565-1568.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sahl H. G. Gene-encoded antibiotics made in bacteria. Ciba Found Symp. 1994;186:27–53. doi: 10.1002/9780470514658.ch3. [DOI] [PubMed] [Google Scholar]
  18. Sampson B. A., Misra R., Benson S. A. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics. 1989 Jul;122(3):491–501. doi: 10.1093/genetics/122.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schonwetter B. S., Stolzenberg E. D., Zasloff M. A. Epithelial antibiotics induced at sites of inflammation. Science. 1995 Mar 17;267(5204):1645–1648. doi: 10.1126/science.7886453. [DOI] [PubMed] [Google Scholar]
  20. Scotti R., Dulworth J. K., Kenny M. T., Goldstein B. P. Effect of protein on ramoplanin broth microdilution minimum inhibitory concentrations. Diagn Microbiol Infect Dis. 1993 Oct;17(3):209–211. doi: 10.1016/0732-8893(93)90098-r. [DOI] [PubMed] [Google Scholar]
  21. Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248. doi: 10.1038/292246a0. [DOI] [PubMed] [Google Scholar]
  22. Takemura H., Kaku M., Kohno S., Hirakata Y., Tanaka H., Yoshida R., Tomono K., Koga H., Wada A., Hirayama T. Evaluation of susceptibility of gram-positive and -negative bacteria to human defensins by using radial diffusion assay. Antimicrob Agents Chemother. 1996 Oct;40(10):2280–2284. doi: 10.1128/aac.40.10.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tamamura H., Murakami T., Horiuchi S., Sugihara K., Otaka A., Takada W., Ibuka T., Waki M., Yamamoto N., Fujii N. Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem Pharm Bull (Tokyo) 1995 May;43(5):853–858. doi: 10.1248/cpb.43.853. [DOI] [PubMed] [Google Scholar]
  24. Yasin B., Harwig S. S., Lehrer R. I., Wagar E. A. Susceptibility of Chlamydia trachomatis to protegrins and defensins. Infect Immun. 1996 Mar;64(3):709–713. doi: 10.1128/iai.64.3.709-713.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhao C., Ganz T., Lehrer R. I. The structure of porcine protegrin genes. FEBS Lett. 1995 Jul 17;368(2):197–202. doi: 10.1016/0014-5793(95)00633-k. [DOI] [PubMed] [Google Scholar]
  27. Zhao C., Liu L., Lehrer R. I. Identification of a new member of the protegrin family by cDNA cloning. FEBS Lett. 1994 Jun 13;346(2-3):285–288. doi: 10.1016/0014-5793(94)00493-5. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES