Abstract
Amphotericin B (AmB) enhanced nitrite synthesis by murine macrophage-like J774.16 cells in a dose-dependent fashion. This effect was retained in the presence of Cryptococcus neoformans capsular polysaccharide, a known virulence factor. AmB and anticapsular antibody increased nitrite synergistically. In all cases, AmB required gamma interferon; C. neoformans cells were unable to elicit nitrite, with or without AmB.
Full Text
The Full Text of this article is available as a PDF (501.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alspaugh J. A., Granger D. L. Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis. Infect Immun. 1991 Jul;59(7):2291–2296. doi: 10.1128/iai.59.7.2291-2296.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aslanzadeh J., Mormol J. S., Little J. R. Anticryptococcal activity of amphotericin B-stimulated macrophages. Immunopharmacol Immunotoxicol. 1991;13(4):465–483. doi: 10.3109/08923979109019717. [DOI] [PubMed] [Google Scholar]
- Belay T., Cherniak R., O'Neill E. B., Kozel T. R. Serotyping of Cryptococcus neoformans by dot enzyme assay. J Clin Microbiol. 1996 Feb;34(2):466–470. doi: 10.1128/jcm.34.2.466-470.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhattacharjee A. K., Bennett J. E., Glaudemans C. P. Capsular polysaccharides of Cryptococcus neoformans. Rev Infect Dis. 1984 Sep-Oct;6(5):619–624. doi: 10.1093/clinids/6.5.619. [DOI] [PubMed] [Google Scholar]
- Brajtburg J., Powderly W. G., Kobayashi G. S., Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother. 1990 Feb;34(2):183–188. doi: 10.1128/aac.34.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casadevall A., Mukherjee J., Scharff M. D. Monoclonal antibody based ELISAs for cryptococcal polysaccharide. J Immunol Methods. 1992 Sep 18;154(1):27–35. doi: 10.1016/0022-1759(92)90209-c. [DOI] [PubMed] [Google Scholar]
- Chang Y. C., Kwon-Chung K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994 Jul;14(7):4912–4919. doi: 10.1128/mcb.14.7.4912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherniak R., Sundstrom J. B. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect Immun. 1994 May;62(5):1507–1512. doi: 10.1128/iai.62.5.1507-1512.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chia J. K., Pollack M. Amphotericin B induces tumor necrosis factor production by murine macrophages. J Infect Dis. 1989 Jan;159(1):113–116. doi: 10.1093/infdis/159.1.113. [DOI] [PubMed] [Google Scholar]
- Devi S. J., Schneerson R., Egan W., Ulrich T. J., Bryla D., Robbins J. B., Bennett J. E. Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity. Infect Immun. 1991 Oct;59(10):3700–3707. doi: 10.1128/iai.59.10.3700-3707.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond R. D., Bennett J. E. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974 Feb;80(2):176–181. doi: 10.7326/0003-4819-80-2-176. [DOI] [PubMed] [Google Scholar]
- Drapier J. C., Wietzerbin J., Hibbs J. B., Jr Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur J Immunol. 1988 Oct;18(10):1587–1592. doi: 10.1002/eji.1830181018. [DOI] [PubMed] [Google Scholar]
- Dromer F., Charreire J. Improved amphotericin B activity by a monoclonal anti-Cryptococcus neoformans antibody: study during murine cryptococcosis and mechanisms of action. J Infect Dis. 1991 May;163(5):1114–1120. doi: 10.1093/infdis/163.5.1114. [DOI] [PubMed] [Google Scholar]
- Dromer F., Varma A., Ronin O., Mathoulin S., Dupont B. Molecular typing of Cryptococcus neoformans serotype D clinical isolates. J Clin Microbiol. 1994 Oct;32(10):2364–2371. doi: 10.1128/jcm.32.10.2364-2371.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dumarey C. H., Labrousse V., Rastogi N., Vargaftig B. B., Bachelet M. Selective Mycobacterium avium-induced production of nitric oxide by human monocyte-derived macrophages. J Leukoc Biol. 1994 Jul;56(1):36–40. doi: 10.1002/jlb.56.1.36. [DOI] [PubMed] [Google Scholar]
- Feldmesser M., Casadevall A. Effect of serum IgG1 to Cryptococcus neoformans glucuronoxylomannan on murine pulmonary infection. J Immunol. 1997 Jan 15;158(2):790–799. [PubMed] [Google Scholar]
- Fromtling R. A., Shadomy H. J., Jacobson E. S. Decreased virulence in stable, acapsular mutants of cryptococcus neoformans. Mycopathologia. 1982 Jul 23;79(1):23–29. doi: 10.1007/BF00636177. [DOI] [PubMed] [Google Scholar]
- GORDON M. A., LAPA E. SERUM PROTEIN ENHANCEMENT OF ANTIBIOTIC THERAPY IN CRYPTOCOCCOSIS. J Infect Dis. 1964 Oct;114:373–377. doi: 10.1093/infdis/114.4.373. [DOI] [PubMed] [Google Scholar]
- Goldman D., Cho Y., Zhao M., Casadevall A., Lee S. C. Expression of inducible nitric oxide synthase in rat pulmonary Cryptococcus neoformans granulomas. Am J Pathol. 1996 Apr;148(4):1275–1282. [PMC free article] [PubMed] [Google Scholar]
- Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. J Clin Invest. 1988 Apr;81(4):1129–1136. doi: 10.1172/JCI113427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graybill J. R., Craven P. C., Mitchell L. F., Drutz D. J. Interaction of chemotherapy and immune defenses in experimental murine cryptococcosis. Antimicrob Agents Chemother. 1978 Nov;14(5):659–667. doi: 10.1128/aac.14.5.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrmann J. L., Dubois N., Fourgeaud M., Basset D., Lagrange P. H. Synergic inhibitory activity of amphotericin-B and gamma interferon against intracellular Cryptococcus neoformans in murine macrophages. J Antimicrob Chemother. 1994 Dec;34(6):1051–1058. doi: 10.1093/jac/34.6.1051. [DOI] [PubMed] [Google Scholar]
- Joly V., Saint-Julien L., Carbon C., Yeni P. In vivo activity of interferon-gamma in combination with amphotericin B in the treatment of experimental cryptococcosis. J Infect Dis. 1994 Nov;170(5):1331–1334. doi: 10.1093/infdis/170.5.1331. [DOI] [PubMed] [Google Scholar]
- Kozel T. R., Cazin J. Nonencapsulated Variant of Cryptococcus neoformans I. Virulence Studies and Characterization of Soluble Polysaccharide. Infect Immun. 1971 Feb;3(2):287–294. doi: 10.1128/iai.3.2.287-294.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozel T. R., Gotschlich E. C. The capsule of cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol. 1982 Oct;129(4):1675–1680. [PubMed] [Google Scholar]
- Lee S. C., Casadevall A., Dickson D. W. Immunohistochemical localization of capsular polysaccharide antigen in the central nervous system cells in cryptococcal meningoencephalitis. Am J Pathol. 1996 Apr;148(4):1267–1274. [PMC free article] [PubMed] [Google Scholar]
- Lee S. C., Dickson D. W., Brosnan C. F., Casadevall A. Human astrocytes inhibit Cryptococcus neoformans growth by a nitric oxide-mediated mechanism. J Exp Med. 1994 Jul 1;180(1):365–369. doi: 10.1084/jem.180.1.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. C., Dickson D. W., Casadevall A. Pathology of cryptococcal meningoencephalitis: analysis of 27 patients with pathogenetic implications. Hum Pathol. 1996 Aug;27(8):839–847. doi: 10.1016/s0046-8177(96)90459-1. [DOI] [PubMed] [Google Scholar]
- Lovchik J., Lipscomb M., Lyons C. R. Expression of lung inducible nitric oxide synthase protein does not correlate with nitric oxide production in vivo in a pulmonary immune response against Cryptococcus neoformans. J Immunol. 1997 Feb 15;158(4):1772–1778. [PubMed] [Google Scholar]
- Manthey C. L., Perera P. Y., Salkowski C. A., Vogel S. N. Taxol provides a second signal for murine macrophage tumoricidal activity. J Immunol. 1994 Jan 15;152(2):825–831. [PubMed] [Google Scholar]
- Mautino G., Paul-Eugène N., Chanez P., Vignola A. M., Kolb J. P., Bousquet J., Dugas B. Heterogeneous spontaneous and interleukin-4-induced nitric oxide production by human monocytes. J Leukoc Biol. 1994 Jul;56(1):15–20. doi: 10.1002/jlb.56.1.15. [DOI] [PubMed] [Google Scholar]
- Mozaffarian N., Berman J. W., Casadevall A. Immune complexes increase nitric oxide production by interferon-gamma- stimulated murine macrophage-like J774.16 cells. J Leukoc Biol. 1995 Apr;57(4):657–662. doi: 10.1002/jlb.57.4.657. [DOI] [PubMed] [Google Scholar]
- Mukherjee J., Casadevall A., Scharff M. D. Molecular characterization of the humoral responses to Cryptococcus neoformans infection and glucuronoxylomannan-tetanus toxoid conjugate immunization. J Exp Med. 1993 Apr 1;177(4):1105–1116. doi: 10.1084/jem.177.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukherjee J., Zuckier L. S., Scharff M. D., Casadevall A. Therapeutic efficacy of monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan alone and in combination with amphotericin B. Antimicrob Agents Chemother. 1994 Mar;38(3):580–587. doi: 10.1128/aac.38.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson S., Bonecini-Almeida M. da G., Lapa e Silva J. R., Nathan C., Xie Q. W., Mumford R., Weidner J. R., Calaycay J., Geng J., Boechat N. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med. 1996 May 1;183(5):2293–2302. doi: 10.1084/jem.183.5.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perfect J. R., Granger D. L., Durack D. T. Effects of antifungal agents and gamma interferon on macrophage cytotoxicity for fungi and tumor cells. J Infect Dis. 1987 Aug;156(2):316–323. doi: 10.1093/infdis/156.2.316. [DOI] [PubMed] [Google Scholar]
- Powderly W. G., Cloud G. A., Dismukes W. E., Saag M. S. Measurement of cryptococcal antigen in serum and cerebrospinal fluid: value in the management of AIDS-associated cryptococcal meningitis. Clin Infect Dis. 1994 May;18(5):789–792. doi: 10.1093/clinids/18.5.789. [DOI] [PubMed] [Google Scholar]
- Powderly W. G., Kobayashi G. S., Herzig G. P., Medoff G. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Am J Med. 1988 May;84(5):826–832. doi: 10.1016/0002-9343(88)90059-9. [DOI] [PubMed] [Google Scholar]
- Reiner S. L., Zheng S., Corry D. B., Locksley R. M. Constructing polycompetitor cDNAs for quantitative PCR. J Immunol Methods. 1993 Sep 27;165(1):37–46. doi: 10.1016/0022-1759(93)90104-f. [DOI] [PubMed] [Google Scholar]
- Spitzer E. D., Spitzer S. G., Freundlich L. F., Casadevall A. Persistence of initial infection in recurrent Cryptococcus neoformans meningitis. Lancet. 1993 Mar 6;341(8845):595–596. doi: 10.1016/0140-6736(93)90354-j. [DOI] [PubMed] [Google Scholar]
- Stein S. H., Little J. R., Little K. D. Parallel inheritance of tissue catalase activity and immunostimulatory action of amphotericin B in inbred mouse strains. Cell Immunol. 1987 Mar;105(1):99–109. doi: 10.1016/0008-8749(87)90059-1. [DOI] [PubMed] [Google Scholar]
- Tohyama M., Kawakami K., Futenma M., Saito A. Enhancing effect of oxygen radical scavengers on murine macrophage anticryptococcal activity through production of nitric oxide. Clin Exp Immunol. 1996 Mar;103(3):436–441. doi: 10.1111/j.1365-2249.1996.tb08299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tohyama M., Kawakami K., Saito A. Anticryptococcal effect of amphotericin B is mediated through macrophage production of nitric oxide. Antimicrob Agents Chemother. 1996 Aug;40(8):1919–1923. doi: 10.1128/aac.40.8.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokuda Y., Tsuji M., Yamazaki M., Kimura S., Abe S., Yamaguchi H. Augmentation of murine tumor necrosis factor production by amphotericin B in vitro and in vivo. Antimicrob Agents Chemother. 1993 Oct;37(10):2228–2230. doi: 10.1128/aac.37.10.2228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vecchiarelli A., Pietrella D., Dottorini M., Monari C., Retini C., Todisco T., Bistoni F. Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin Exp Immunol. 1994 Nov;98(2):217–223. doi: 10.1111/j.1365-2249.1994.tb06128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vecchiarelli A., Retini C., Pietrella D., Monari C., Tascini C., Beccari T., Kozel T. R. Downregulation by cryptococcal polysaccharide of tumor necrosis factor alpha and interleukin-1 beta secretion from human monocytes. Infect Immun. 1995 Aug;63(8):2919–2923. doi: 10.1128/iai.63.8.2919-2923.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vecchiarelli A., Verducci G., Perito S., Puccetti P., Marconi P., Bistoni F. Involvement of host macrophages in the immunoadjuvant activity of amphotericin B in a mouse fungal infection model. J Antibiot (Tokyo) 1986 Jun;39(6):846–855. doi: 10.7164/antibiotics.39.846. [DOI] [PubMed] [Google Scholar]
- Wolf J. E., Massof S. E. In vivo activation of macrophage oxidative burst activity by cytokines and amphotericin B. Infect Immun. 1990 May;58(5):1296–1300. doi: 10.1128/iai.58.5.1296-1300.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf J. E., Stein S. H., Little K. D., Abegg A. L., Little J. R. Amphotericin B selectively stimulates macrophages from high responder mouse strains. Immunopharmacol Immunotoxicol. 1991;13(3):221–235. doi: 10.3109/08923979109019702. [DOI] [PubMed] [Google Scholar]
- Yamaguchi H., Abe S., Tokuda Y. Immunomodulating activity of antifungal drugs. Ann N Y Acad Sci. 1993 Jun 23;685:447–457. doi: 10.1111/j.1749-6632.1993.tb35905.x. [DOI] [PubMed] [Google Scholar]
- Zebedee S. L., Koduri R. K., Mukherjee J., Mukherjee S., Lee S., Sauer D. F., Scharff M. D., Casadevall A. Mouse-human immunoglobulin G1 chimeric antibodies with activities against Cryptococcus neoformans. Antimicrob Agents Chemother. 1994 Jul;38(7):1507–1514. doi: 10.1128/aac.38.7.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinetti M., Fantuzzi G., Delgado R., Di Santo E., Ghezzi P., Fratelli M. Endogenous nitric oxide production by human monocytic cells regulates LPS-induced TNF production. Eur Cytokine Netw. 1995 Jan-Feb;6(1):45–48. [PubMed] [Google Scholar]
- Zuger A., Louie E., Holzman R. S., Simberkoff M. S., Rahal J. J. Cryptococcal disease in patients with the acquired immunodeficiency syndrome. Diagnostic features and outcome of treatment. Ann Intern Med. 1986 Feb;104(2):234–240. doi: 10.7326/0003-4819-104-2-234. [DOI] [PubMed] [Google Scholar]