Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Aug;41(8):1837–1839. doi: 10.1128/aac.41.8.1837

Evaluation of growth promotion and inhibition from mycobactins and nonmycobacterial siderophores (Desferrioxamine and FR160) in Mycobacterium aurum.

S Bosne-David 1, L Bricard 1, F Ramiandrasoa 1, A DeRoussent 1, G Kunesch 1, A Andremont 1
PMCID: PMC164019  PMID: 9257775

Abstract

Heterologous mycobactins and the synthetic FR160 [N4-nonyl,N1,N8-bis(2,3-dihydroxybenzoyl) spermidine hydrobromide (C3 0H4 6N3, O6 Br)] promoted growth in Mycobacterium aurum in low concentrations. They were otherwise highly inhibitory, as opposed to homologous mycobactin, which was strictly growth promoting. Desferrioxamine B (Desferal) had no significant effect on growth.

Full Text

The Full Text of this article is available as a PDF (178.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay R., Ratledge C. Participation of iron on the growth inhibition of pathogenic strains of mycobacterium avium and M. paratuberculosis in serum. Zentralbl Bakteriol Mikrobiol Hyg A. 1986 Aug;262(2):189–194. doi: 10.1016/s0176-6724(86)80019-0. [DOI] [PubMed] [Google Scholar]
  2. Basker M. J., Edmondson R. A., Knott S. J., Ponsford R. J., Slocombe B., White S. J. In vitro antibacterial properties of BRL 36650, a novel 6 alpha-substituted penicillin. Antimicrob Agents Chemother. 1984 Nov;26(5):734–740. doi: 10.1128/aac.26.5.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basker M. J., Frydrych C. H., Harrington F. P., Milner P. H. Antibacterial activity of catecholic piperacillin analogues. J Antibiot (Tokyo) 1989 Aug;42(8):1328–1330. doi: 10.7164/antibiotics.42.1328. [DOI] [PubMed] [Google Scholar]
  4. David H. L. Basis for lack of drug susceptibility of atypical mycobacteria. Rev Infect Dis. 1981 Sep-Oct;3(5):878–884. doi: 10.1093/clinids/3.5.878. [DOI] [PubMed] [Google Scholar]
  5. FRANCIS J., MACTURK H. M., MADINAVEITIA J., SNOW G. A. Mycobactin, a growth factor for Mycobacterium johnei. I. Isolation from Mycobacterium phlei. Biochem J. 1953 Nov;55(4):596–607. doi: 10.1042/bj0550596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kochan I., Cahall D. L., Golden C. A. Employment of tuberculostasis in serum-agar medium for the study of production and activity of Mycobactin. Infect Immun. 1971 Aug;4(2):130–137. doi: 10.1128/iai.4.2.130-137.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kochan I., Pellis N. R., Golden C. A. Mechanism of Tuberculostasis in Mammalian Serum III. Neutralization of Serum Tuberculostasis by Mycobactin. Infect Immun. 1971 Apr;3(4):553–558. doi: 10.1128/iai.3.4.553-558.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ohi N., Aoki B., Shinozaki T., Moro K., Kuroki T., Noto T., Nehashi T., Matsumoto M., Okazaki H., Matsunaga I. Semisynthetic beta-lactam antibiotics. IV. Synthesis and antibacterial activity of new ureidocephalosporin and ureidocephamycin derivatives containing a catechol moiety or its acetate. Chem Pharm Bull (Tokyo) 1987 May;35(5):1903–1909. [PubMed] [Google Scholar]
  9. Ohi N., Aoki B., Shinozaki T., Moro K., Noto T., Nehashi T., Okazaki H., Matsunaga I. Semisynthetic beta-lactam antibiotics. I. Synthesis and antibacterial activity of new ureidopenicillin derivatives having catechol moieties. J Antibiot (Tokyo) 1986 Feb;39(2):230–241. doi: 10.7164/antibiotics.39.230. [DOI] [PubMed] [Google Scholar]
  10. Ong S. A., Peterson T., Neilands J. B. Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem. 1979 Mar 25;254(6):1860–1865. [PubMed] [Google Scholar]
  11. Pradines B., Ramiandrasoa F., Basco L. K., Bricard L., Kunesch G., Le Bras J. In vitro activities of novel catecholate siderophores against Plasmodium falciparum. Antimicrob Agents Chemother. 1996 Sep;40(9):2094–2098. doi: 10.1128/aac.40.9.2094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rastogi N., Moreau B., Capmau M. L., Goh K. S., David H. L. Antibacterial action of amphipathic derivatives of isoniazid against the Mycobacterium avium complex. Zentralbl Bakteriol Mikrobiol Hyg A. 1988 Jun;268(4):456–462. doi: 10.1016/s0176-6724(88)80123-8. [DOI] [PubMed] [Google Scholar]
  13. Rogers H. J. Iron-Binding Catechols and Virulence in Escherichia coli. Infect Immun. 1973 Mar;7(3):445–456. doi: 10.1128/iai.7.3.445-456.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SNOW G. A. THE STRUCTURE OF MYCOBACTIN P, A GROWTH FACTOR FOR MYCOBACTERIUM JOHNEI, AND THE SIGNIFICANCE OF ITS IRON COMPLEX. Biochem J. 1965 Jan;94:160–165. doi: 10.1042/bj0940160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sharman G. J., Williams D. H., Ewing D. F., Ratledge C. Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. Biochem J. 1995 Jan 1;305(Pt 1):187–196. doi: 10.1042/bj3050187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Silley P., Griffiths J. W., Monsey D., Harris A. M. Mode of action of GR69153, a novel catechol-substituted cephalosporin, and its interaction with the tonB-dependent iron transport system. Antimicrob Agents Chemother. 1990 Sep;34(9):1806–1808. doi: 10.1128/aac.34.9.1806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Snow G. A. Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol Rev. 1970 Jun;34(2):99–125. doi: 10.1128/br.34.2.99-125.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stephenson M. C., Ratledge C. Iron transport in mycobacterium smegmatis: uptake of iron from Ferriexochelin. J Gen Microbiol. 1979 Jan;110(1):193–202. doi: 10.1099/00221287-110-1-193. [DOI] [PubMed] [Google Scholar]
  19. Watanabe N. A., Nagasu T., Katsu K., Kitoh K. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob Agents Chemother. 1987 Apr;31(4):497–504. doi: 10.1128/aac.31.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Woodley C. L., David H. L. Effect of temperature on the rate of the transparent to opaque colony type transition in Mycobacterium avium. Antimicrob Agents Chemother. 1976 Jan;9(1):113–119. doi: 10.1128/aac.9.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES