Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Sep;41(9):1859–1866. doi: 10.1128/aac.41.9.1859

Characterization of anti-Toxoplasma activity of SDZ 215-918, a cyclosporin derivative lacking immunosuppressive and peptidyl-prolyl-isomerase-inhibiting activity: possible role of a P glycoprotein in Toxoplasma physiology.

J A Silverman 1, M L Hayes 1, B J Luft 1, K A Joiner 1
PMCID: PMC164025  PMID: 9303374

Abstract

The immunosuppressive agent cyclosporin A (CsA) also possesses broad-spectrum antimicrobial activity. Previous investigators have reported that the obligate intracellular protozoan Toxoplasma gondii is sensitive to CsA. We have measured the sensitivity of Toxoplasma to 26 CsA derivatives that maintain only a subset of the parent compound's activity. We identified one compound, SDZ 215-918, that is a particularly potent inhibitor of parasite invasion and replication, with a 50% inhibitory concentration of 0.45 microg/ml, which is 10-fold lower than that of CsA. Kinetic studies demonstrate that activity has a rapid onset (half-life, < or = 20 min) and is initially reversible, although long-term exposure (> 24 h) to 5 microg/ml is lethal; in contrast, this concentration had no effect on host cell protein synthesis or cell division. SDZ 215-918 acts directly on the parasite, as demonstrated by inhibition of macromolecular synthesis in host-free extracellular parasites. Inhibition of invasion is due to a reduction in parasite motility. SDZ 215-918 does not bind to cyclophilins, the ubiquitous cyclosporin-binding proteins, but is a potent inhibitor of the mammalian P glycoprotein, a member of the ATP binding cassette transporter superfamily and the pump responsible for multidrug resistance in cancer and parasite cell lines. SDZ 215-918 blocks the efflux of rhodamine 123 from extracellular parasites, consistent with inhibition of a P glycoprotein-like pump. We suggest that a P glycoprotein or a related transporter plays a crucial role in the biology of Toxoplasma and may be a novel target for antiparasitic compounds. Preliminary studies with animals indicate that SDZ 215-918 inhibits parasite growth in vivo; its relationship to CsA may make it suitable for clinical development.

Full Text

The Full Text of this article is available as a PDF (262.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi J. D., Deyo D. T., Sun C. Q., Guillaume D., Dunlap B., Rich D. H. Synthesis, conformation, and immunosuppressive activities of three analogues of cyclosporin A modified in the 1-position. J Med Chem. 1990 Mar;33(3):999–1009. doi: 10.1021/jm00165a018. [DOI] [PubMed] [Google Scholar]
  2. Beckers C. J., Roos D. S., Donald R. G., Luft B. J., Schwab J. C., Cao Y., Joiner K. A. Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. J Clin Invest. 1995 Jan;95(1):367–376. doi: 10.1172/JCI117665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell A., Wernli B., Franklin R. M. Roles of peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of antimalarial action of cyclosporin A, FK506, and rapamycin. Biochem Pharmacol. 1994 Aug 3;48(3):495–503. doi: 10.1016/0006-2952(94)90279-8. [DOI] [PubMed] [Google Scholar]
  4. Bellamy W. T. P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol. 1996;36:161–183. doi: 10.1146/annurev.pa.36.040196.001113. [DOI] [PubMed] [Google Scholar]
  5. Blais J., Tardif C., Chamberland S. Effect of clindamycin on intracellular replication, protein synthesis, and infectivity of Toxoplasma gondii. Antimicrob Agents Chemother. 1993 Dec;37(12):2571–2577. doi: 10.1128/aac.37.12.2571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bogdan C., Streck H., Röllinghoff M., Solbach W. Cyclosporin A enhances elimination of intracellular L. major parasites by murine macrophages. Clin Exp Immunol. 1989 Jan;75(1):141–146. [PMC free article] [PubMed] [Google Scholar]
  7. Boote D. J., Dennis I. F., Twentyman P. R., Osborne R. J., Laburte C., Hensel S., Smyth J. F., Brampton M. H., Bleehen N. M. Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol. 1996 Feb;14(2):610–618. doi: 10.1200/JCO.1996.14.2.610. [DOI] [PubMed] [Google Scholar]
  8. Böhme M., Büchler M., Müller M., Keppler D. Differential inhibition by cyclosporins of primary-active ATP-dependent transporters in the hepatocyte canalicular membrane. FEBS Lett. 1993 Oct 25;333(1-2):193–196. doi: 10.1016/0014-5793(93)80403-h. [DOI] [PubMed] [Google Scholar]
  9. Choi I., Mikkelsen R. B. Plasmodium falciparum: ATP/ADP transport across the parasitophorous vacuolar and plasma membranes. Exp Parasitol. 1990 Nov;71(4):452–462. doi: 10.1016/0014-4894(90)90071-j. [DOI] [PubMed] [Google Scholar]
  10. Cornwell M. M., Gottesman M. M., Pastan I. H. Increased vinblastine binding to membrane vesicles from multidrug-resistant KB cells. J Biol Chem. 1986 Jun 15;261(17):7921–7928. [PubMed] [Google Scholar]
  11. Couvreur G., Sadak A., Fortier B., Dubremetz J. F. Surface antigens of Toxoplasma gondii. Parasitology. 1988 Aug;97(Pt 1):1–10. doi: 10.1017/s0031182000066695. [DOI] [PubMed] [Google Scholar]
  12. Dobrowolski J. M., Sibley L. D. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell. 1996 Mar 22;84(6):933–939. doi: 10.1016/s0092-8674(00)81071-5. [DOI] [PubMed] [Google Scholar]
  13. Donald R. G., Carter D., Ullman B., Roos D. S. Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem. 1996 Jun 14;271(24):14010–14019. doi: 10.1074/jbc.271.24.14010. [DOI] [PubMed] [Google Scholar]
  14. Efferth T., Löhrke H., Volm M. Reciprocal correlation between expression of P-glycoprotein and accumulation of rhodamine 123 in human tumors. Anticancer Res. 1989 Nov-Dec;9(6):1633–1637. [PubMed] [Google Scholar]
  15. Emmer G., Grassberger M. A., Schulz G., Boesch D., Gavériaux C., Loor F. Derivatives of a novel cyclopeptolide. 2. Synthesis, activity against multidrug resistance in CHO and KB cells in vitro, and structure-activity relationships. J Med Chem. 1994 Jun 24;37(13):1918–1928. doi: 10.1021/jm00039a003. [DOI] [PubMed] [Google Scholar]
  16. Endo T., Yagita K. Effect of extracellular ions on motility and cell entry in Toxoplasma gondii. J Protozool. 1990 Mar-Apr;37(2):133–138. doi: 10.1111/j.1550-7408.1990.tb05883.x. [DOI] [PubMed] [Google Scholar]
  17. Ferry D. R., Traunecker H., Kerr D. J. Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer. 1996 Jun;32A(6):1070–1081. doi: 10.1016/0959-8049(96)00091-3. [DOI] [PubMed] [Google Scholar]
  18. Germann U. A. P-glycoprotein--a mediator of multidrug resistance in tumour cells. Eur J Cancer. 1996 Jun;32A(6):927–944. doi: 10.1016/0959-8049(96)00057-3. [DOI] [PubMed] [Google Scholar]
  19. Gueiros-Filho F. J., Viola J. P., Gomes F. C., Farina M., Lins U., Bertho A. L., Wirth D. F., Lopes U. G. Leishmania amazonensis: multidrug resistance in vinblastine-resistant promastigotes is associated with rhodamine 123 efflux, DNA amplification, and RNA overexpression of a Leishmania mdr1 gene. Exp Parasitol. 1995 Dec;81(4):480–490. doi: 10.1006/expr.1995.1141. [DOI] [PubMed] [Google Scholar]
  20. Haynes M., Fuller L., Haynes D. H., Miller J. Cyclosporin partitions into phospholipid vesicles and disrupts membrane architecture. Immunol Lett. 1985;11(5-6):343–349. doi: 10.1016/0165-2478(85)90118-x. [DOI] [PubMed] [Google Scholar]
  21. High K. P., Handschumacher R. E. Immunity, microbial pathogenesis, and immunophilins: finding the keys, now where are the locks? Infect Agents Dis. 1992 Jun;1(3):121–135. [PubMed] [Google Scholar]
  22. High K. P., Joiner K. A., Handschumacher R. E. Isolation, cDNA sequences, and biochemical characterization of the major cyclosporin-binding proteins of Toxoplasma gondii. J Biol Chem. 1994 Mar 25;269(12):9105–9112. [PubMed] [Google Scholar]
  23. High K. P. The antimicrobial activities of cyclosporine, FK506, and rapamycin. Transplantation. 1994 Jun 27;57(12):1689–1700. [PubMed] [Google Scholar]
  24. Holfels E., McAuley J., Mack D., Milhous W. K., McLeod R. In vitro effects of artemisinin ether, cycloguanil hydrochloride (alone and in combination with sulfadiazine), quinine sulfate, mefloquine, primaquine phosphate, trifluoperazine hydrochloride, and verapamil on Toxoplasma gondii. Antimicrob Agents Chemother. 1994 Jun;38(6):1392–1396. doi: 10.1128/aac.38.6.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Joiner K. A., Fuhrman S. A., Miettinen H. M., Kasper L. H., Mellman I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science. 1990 Aug 10;249(4969):641–646. doi: 10.1126/science.2200126. [DOI] [PubMed] [Google Scholar]
  26. Kofron J. L., Kuzmic P., Kishore V., Colón-Bonilla E., Rich D. H. Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry. 1991 Jun 25;30(25):6127–6134. doi: 10.1021/bi00239a007. [DOI] [PubMed] [Google Scholar]
  27. Kunz J., Hall M. N. Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. Trends Biochem Sci. 1993 Sep;18(9):334–338. doi: 10.1016/0968-0004(93)90069-y. [DOI] [PubMed] [Google Scholar]
  28. Mack D. G., McLeod R. New micromethod to study the effect of antimicrobial agents on Toxoplasma gondii: comparison of sulfadoxine and sulfadiazine individually and in combination with pyrimethamine and study of clindamycin, metronidazole, and cyclosporin A. Antimicrob Agents Chemother. 1984 Jul;26(1):26–30. doi: 10.1128/aac.26.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maurer G. Metabolism of cyclosporine. Transplant Proc. 1985 Aug;17(4 Suppl 1):19–26. [PubMed] [Google Scholar]
  30. McCabe R. E., Luft B. J., Remington J. S. The effects of cyclosporine on Toxoplasma gondii in vivo and in vitro. Transplantation. 1986 May;41(5):611–615. doi: 10.1097/00007890-198605000-00012. [DOI] [PubMed] [Google Scholar]
  31. Mineo J. R., Kasper L. H. Attachment of Toxoplasma gondii to host cells involves major surface protein, SAG-1 (P30). Exp Parasitol. 1994 Aug;79(1):11–20. doi: 10.1006/expr.1994.1054. [DOI] [PubMed] [Google Scholar]
  32. Morisaki J. H., Heuser J. E., Sibley L. D. Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci. 1995 Jun;108(Pt 6):2457–2464. doi: 10.1242/jcs.108.6.2457. [DOI] [PubMed] [Google Scholar]
  33. Nickell S. P., Scheibel L. W., Cole G. A. Inhibition by cyclosporin A of rodent malaria in vivo and human malaria in vitro. Infect Immun. 1982 Sep;37(3):1093–1100. doi: 10.1128/iai.37.3.1093-1100.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ossorio P. N., Dubremetz J. F., Joiner K. A. A soluble secretory protein of the intracellular parasite Toxoplasma gondii associates with the parasitophorous vacuole membrane through hydrophobic interactions. J Biol Chem. 1994 May 27;269(21):15350–15357. [PubMed] [Google Scholar]
  35. Pfefferkorn E. R., Nothnagel R. F., Borotz S. E. Parasiticidal effect of clindamycin on Toxoplasma gondii grown in cultured cells and selection of a drug-resistant mutant. Antimicrob Agents Chemother. 1992 May;36(5):1091–1096. doi: 10.1128/aac.36.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pfefferkorn E. R., Pfefferkorn L. C. Specific labeling of intracellular Toxoplasma gondii with uracil. J Protozool. 1977 Aug;24(3):449–453. doi: 10.1111/j.1550-7408.1977.tb04774.x. [DOI] [PubMed] [Google Scholar]
  37. Price E. R., Jin M., Lim D., Pati S., Walsh C. T., McKeon F. D. Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3931–3935. doi: 10.1073/pnas.91.9.3931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ruetz S., Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. 1994 Jul 1;77(7):1071–1081. doi: 10.1016/0092-8674(94)90446-4. [DOI] [PubMed] [Google Scholar]
  39. Ryning F. W., Remington J. S. Effect of cytochalasin D on Toxoplasma gondii cell entry. Infect Immun. 1978 Jun;20(3):739–743. doi: 10.1128/iai.20.3.739-743.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Scheper R. J., Bulte J. W., Brakkee J. G., Quak J. J., van der Schoot E., Balm A. J., Meijer C. J., Broxterman H. J., Kuiper C. M., Lankelma J. Monoclonal antibody JSB-1 detects a highly conserved epitope on the P-glycoprotein associated with multi-drug-resistance. Int J Cancer. 1988 Sep 15;42(3):389–394. doi: 10.1002/ijc.2910420314. [DOI] [PubMed] [Google Scholar]
  41. Schinkel A. H., Mol C. A., Wagenaar E., van Deemter L., Smit J. J., Borst P. Multidrug resistance and the role of P-glycoprotein knockout mice. Eur J Cancer. 1995 Jul-Aug;31A(7-8):1295–1298. doi: 10.1016/0959-8049(95)00130-b. [DOI] [PubMed] [Google Scholar]
  42. Schreiber S. L. Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell. 1992 Aug 7;70(3):365–368. doi: 10.1016/0092-8674(92)90158-9. [DOI] [PubMed] [Google Scholar]
  43. Schwab J. C., Afifi Afifi M., Pizzorno G., Handschumacher R. E., Joiner K. A. Toxoplasma gondii tachyzoites possess an unusual plasma membrane adenosine transporter. Mol Biochem Parasitol. 1995 Mar;70(1-2):59–69. doi: 10.1016/0166-6851(95)00005-l. [DOI] [PubMed] [Google Scholar]
  44. Twentyman P. R. Cyclosporins as drug resistance modifiers. Biochem Pharmacol. 1992 Jan 9;43(1):109–117. doi: 10.1016/0006-2952(92)90668-9. [DOI] [PubMed] [Google Scholar]
  45. Ullman B. Multidrug resistance and P-glycoproteins in parasitic protozoa. J Bioenerg Biomembr. 1995 Feb;27(1):77–84. doi: 10.1007/BF02110334. [DOI] [PubMed] [Google Scholar]
  46. Wenger R. Cyclosporine and analogues: structural requirements for immunosuppressive activity. Transplant Proc. 1986 Dec;18(6 Suppl 5):213–218. [PubMed] [Google Scholar]
  47. Werk R., Bommer W. Toxoplasma gondii: membrane properties of active energy-dependent invasion of host cells. Tropenmed Parasitol. 1980 Dec;31(4):417–420. [PubMed] [Google Scholar]
  48. van Helvoort A., Smith A. J., Sprong H., Fritzsche I., Schinkel A. H., Borst P., van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996 Nov 1;87(3):507–517. doi: 10.1016/s0092-8674(00)81370-7. [DOI] [PubMed] [Google Scholar]
  49. von Wartburg A., Traber R. Chemistry of the natural cyclosporin metabolites. Prog Allergy. 1986;38:28–45. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES