Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Sep;41(9):1904–1909. doi: 10.1128/aac.41.9.1904

Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene.

V de Crécy-Lagard 1, W Saurin 1, D Thibaut 1, P Gil 1, L Naudin 1, J Crouzet 1, V Blanc 1
PMCID: PMC164033  PMID: 9303382

Abstract

Streptomyces pristinaespiralis and S. virginiae both produce closely related hexadepsipeptide antibiotics of the streptogramin B family. Pristinamycins I and virginiamycins S differ only in the fifth incorporated precursor, di(mono)methylated amine and phenylalanine, respectively. By using degenerate oligonucleotide probes derived from internal sequences of the purified S. pristinaespiralis SnbD and SnbE proteins, the genes from two streptogramin B producers, S. pristinaespiralis and S. virginiae, encoding the peptide synthetase involved in the activation and incorporation of the last four precursors (proline, 4-dimethylparaaminophenylalanine [for pristinamycin I(A)] or phenylalanine [for virginiamycin S], pipecolic acid, and phenylglycine) were cloned. Analysis of the sequence revealed that SnbD and SnbE are encoded by a unique snbDE gene. SnbDE (4,849 amino acids [aa]) contains four amino acid activation domains, four condensation domains, an N-methylation domain, and a C-terminal thioesterase domain. Comparison of the sequences of 55 amino acid-activating modules from different origins confirmed that these sequences contain enough information for the performance of legitimate predictions of their substrate specificity. Partial sequencing (1,993 aa) of the SnbDE protein of S. virginiae allowed comparison of the proline and aromatic acid activation domains of the two species and the identification of coupled frameshift mutations.

Full Text

The Full Text of this article is available as a PDF (264.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Blanc V., Gil P., Bamas-Jacques N., Lorenzon S., Zagorec M., Schleuniger J., Bisch D., Blanche F., Debussche L., Crouzet J. Identification and analysis of genes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin I. Mol Microbiol. 1997 Jan;23(2):191–202. doi: 10.1046/j.1365-2958.1997.2031574.x. [DOI] [PubMed] [Google Scholar]
  3. Blanc V., Lagneaux D., Didier P., Gil P., Lacroix P., Crouzet J. Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin IIB to pristinamycin IIA (PIIA): PIIA synthase and NADH:riboflavin 5'-phosphate oxidoreductase. J Bacteriol. 1995 Sep;177(18):5206–5214. doi: 10.1128/jb.177.18.5206-5214.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner S. The molecular evolution of genes and proteins: a tale of two serines. Nature. 1988 Aug 11;334(6182):528–530. doi: 10.1038/334528a0. [DOI] [PubMed] [Google Scholar]
  5. Chung C. T., Miller R. H. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res. 1988 Apr 25;16(8):3580–3580. doi: 10.1093/nar/16.8.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cocito C. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev. 1979 Jun;43(2):145–192. doi: 10.1128/mr.43.2.145-192.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cosmina P., Rodriguez F., de Ferra F., Grandi G., Perego M., Venema G., van Sinderen D. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol. 1993 May;8(5):821–831. doi: 10.1111/j.1365-2958.1993.tb01629.x. [DOI] [PubMed] [Google Scholar]
  8. De Crécy-Lagard V., Marlière P., Saurin W. Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. C R Acad Sci III. 1995 Sep;318(9):927–936. [PubMed] [Google Scholar]
  9. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. doi: 10.1016/0378-1119(82)90167-6. [DOI] [PubMed] [Google Scholar]
  10. Haese A., Schubert M., Herrmann M., Zocher R. Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol. 1993 Mar;7(6):905–914. doi: 10.1111/j.1365-2958.1993.tb01181.x. [DOI] [PubMed] [Google Scholar]
  11. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  12. Hohn B., Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. doi: 10.1016/0378-1119(80)90069-4. [DOI] [PubMed] [Google Scholar]
  13. Kleinkauf H., Von Döhren H. A nonribosomal system of peptide biosynthesis. Eur J Biochem. 1996 Mar 1;236(2):335–351. doi: 10.1111/j.1432-1033.1996.00335.x. [DOI] [PubMed] [Google Scholar]
  14. Lawen A., Zocher R. Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem. 1990 Jul 5;265(19):11355–11360. [PubMed] [Google Scholar]
  15. Lawson D. M., Derewenda U., Serre L., Ferri S., Szittner R., Wei Y., Meighen E. A., Derewenda Z. S. Structure of a myristoyl-ACP-specific thioesterase from Vibrio harveyi. Biochemistry. 1994 Aug 16;33(32):9382–9388. doi: 10.1021/bi00198a003. [DOI] [PubMed] [Google Scholar]
  16. MacCabe A. P., van Liempt H., Palissa H., Unkles S. E., Riach M. B., Pfeifer E., von Döhren H., Kinghorn J. R. Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J Biol Chem. 1991 Jul 5;266(19):12646–12654. [PubMed] [Google Scholar]
  17. Malone T., Blumenthal R. M., Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol. 1995 Nov 3;253(4):618–632. doi: 10.1006/jmbi.1995.0577. [DOI] [PubMed] [Google Scholar]
  18. O'Gara M., McCloy K., Malone T., Cheng X. Structure-based sequence alignment of three AdoMet-dependent DNA methyltransferases. Gene. 1995 May 19;157(1-2):135–138. doi: 10.1016/0378-1119(94)00669-j. [DOI] [PubMed] [Google Scholar]
  19. PRIDHAM T. G., ANDERSON P., FOLEY C., LINDENFELSER L. A., HESSELTINE C. W., BENEDICT R. G. A selection of media for maintenance and taxonomic study of Streptomyces. Antibiot Annu. 1956:947–953. [PubMed] [Google Scholar]
  20. Roth J. R. Frameshift mutations. Annu Rev Genet. 1974;8:319–346. doi: 10.1146/annurev.ge.08.120174.001535. [DOI] [PubMed] [Google Scholar]
  21. Stachelhaus T., Schneider A., Marahiel M. A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science. 1995 Jul 7;269(5220):69–72. doi: 10.1126/science.7604280. [DOI] [PubMed] [Google Scholar]
  22. Thibaut D., Bisch D., Ratet N., Maton L., Couder M., Debussche L., Blanche F. Purification of peptide synthetases involved in pristinamycin I biosynthesis. J Bacteriol. 1997 Feb;179(3):697–704. doi: 10.1128/jb.179.3.697-704.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weber G., Schörgendorfer K., Schneider-Scherzer E., Leitner E. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet. 1994 Aug;26(2):120–125. doi: 10.1007/BF00313798. [DOI] [PubMed] [Google Scholar]
  24. Witkowski A., Naggert J., Wessa B., Smith S. A catalytic role for histidine 237 in rat mammary gland thioesterase II. J Biol Chem. 1991 Oct 5;266(28):18514–18519. [PubMed] [Google Scholar]
  25. de Crécy-Lagard V., Blanc V., Gil P., Naudin L., Lorenzon S., Famechon A., Bamas-Jacques N., Crouzet J., Thibaut D. Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes. J Bacteriol. 1997 Feb;179(3):705–713. doi: 10.1128/jb.179.3.705-713.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES