Abstract
Two new glucan synthesis inhibitors, the echinocandin LY303366 and the pneumocandin MK-0991 (formerly L-743,872), were studied for their antifungal activities in vitro in relation to each other and in relation to the activity of the triazole fluconazole. Systematic analysis of broth macrodilution testing by varying the starting inoculum size, medium composition, medium pH, temperature of incubation, length of incubation, or selection of endpoints failed to identify significant differences in antifungal activity for either LY303366 or MK-0991 in comparison to the activity under standard test conditions specified for other antifungal agents in National Committee for Clinical Laboratory Standards (NCCLS) document M27A. Under standardized conditions, both drugs exhibited prominent activity against Candida species including Candida glabrata and Candida krusei but showed little activity against Cryptococcus neoformans. This spectrum of activity differed from that of fluconazole, which exhibited marginal activity against C. glabrata and C. krusei but prominent activity against other Candida species and C. neoformans. For individual strains, broth microdilution MICs of LY303366 and MK-0991 were similar to but frequently higher than broth macrodilution results. In contrast, fluconazole broth microdilution MICs were often lower than broth microdilution results. We conclude that the test conditions specified in NCCLS document M27A are applicable to these two new glucan synthesis inhibitors and that systematic differences between broth microdilution procedures and the broth macrodilution reference standard will need to be addressed before the two test methods can be used interchangeably.
Full Text
The Full Text of this article is available as a PDF (161.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertson G. D., Niimi M., Cannon R. D., Jenkinson H. F. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother. 1996 Dec;40(12):2835–2841. doi: 10.1128/aac.40.12.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calhoun D. L., Galgiani J. N. Analysis of pH and buffer effects on flucytosine activity in broth dilution susceptibility testing of Candida albicans in two synthetic media. Antimicrob Agents Chemother. 1984 Sep;26(3):364–367. doi: 10.1128/aac.26.3.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook R. A., McIntyre K. A., Galgiani J. N. Effects of incubation temperature, inoculum size, and medium on agreement of macro- and microdilution broth susceptibility test results for yeasts. Antimicrob Agents Chemother. 1990 Aug;34(8):1542–1545. doi: 10.1128/aac.34.8.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debono M., Gordee R. S. Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol. 1994;48:471–497. doi: 10.1146/annurev.mi.48.100194.002351. [DOI] [PubMed] [Google Scholar]
- Dick J. D., Merz W. G., Saral R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob Agents Chemother. 1980 Jul;18(1):158–163. doi: 10.1128/aac.18.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubé M. P., Heseltine P. N., Rinaldi M. G., Evans S., Zawacki B. Fungemia and colonization with nystatin-resistant Candida rugosa in a burn unit. Clin Infect Dis. 1994 Jan;18(1):77–82. doi: 10.1093/clinids/18.1.77. [DOI] [PubMed] [Google Scholar]
- Ernst M. E., Klepser M. E., Wolfe E. J., Pfaller M. A. Antifungal dynamics of LY 303366, an investigational echinocandin B analog, against Candida ssp. Diagn Microbiol Infect Dis. 1996 Nov-Dec;26(3-4):125–131. doi: 10.1016/s0732-8893(96)00202-7. [DOI] [PubMed] [Google Scholar]
- Franzot S. P., Casadevall A. Pneumocandin L-743,872 enhances the activities of amphotericin B and fluconazole against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother. 1997 Feb;41(2):331–336. doi: 10.1128/aac.41.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galgiani J. N., Lewis M. L. In vitro studies of activities of the antifungal triazoles SCH56592 and itraconazole against Candida albicans, Cryptococcus neoformans, and other pathogenic yeasts. Antimicrob Agents Chemother. 1997 Jan;41(1):180–183. doi: 10.1128/aac.41.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galgiani J. N., Stevens D. A. Antimicrobial susceptibility testing of yeasts: a turbidimetric technique independent of inoculum size. Antimicrob Agents Chemother. 1976 Oct;10(4):721–728. doi: 10.1128/aac.10.4.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galgiant J. N., Stevens D. A. Turbidimetric studies of growth inhibition of yeasts with three drugs: inquiry into inoculum-dependent susceptibility testing, time of onset of drug effect, and implications for current and newer methods. Antimicrob Agents Chemother. 1978 Feb;13(2):249–254. doi: 10.1128/aac.13.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heald A. E., Cox G. M., Schell W. A., Bartlett J. A., Perfect J. R. Oropharyngeal yeast flora and fluconazole resistance in HIV-infected patients receiving long-term continuous versus intermittent fluconazole therapy. AIDS. 1996 Mar;10(3):263–268. doi: 10.1097/00002030-199603000-00004. [DOI] [PubMed] [Google Scholar]
- Kurtz M. B., Bernard E. M., Edwards F. F., Marrinan J. A., Dropinski J., Douglas C. M., Armstrong D. Aerosol and parenteral pneumocandins are effective in a rat model of pulmonary aspergillosis. Antimicrob Agents Chemother. 1995 Aug;39(8):1784–1789. doi: 10.1128/aac.39.8.1784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntyre K. A., Galgiani J. N. In vitro susceptibilities of yeasts to a new antifungal triazole, SCH 39304: effects of test conditions and relation to in vivo efficacy. Antimicrob Agents Chemother. 1989 Jul;33(7):1095–1100. doi: 10.1128/aac.33.7.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntyre K. A., Galgiani J. N. pH and other effects on the antifungal activity of cilofungin (LY121019). Antimicrob Agents Chemother. 1989 May;33(5):731–735. doi: 10.1128/aac.33.5.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng T., Galgiani J. N. In vitro studies of a new antifungal triazole, D0870, against Candida albicans, Cryptococcus neoformans, and other pathogenic yeasts. Antimicrob Agents Chemother. 1993 Oct;37(10):2126–2131. doi: 10.1128/aac.37.10.2126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfaller M. A., Burmeister L., Bartlett M. S., Rinaldi M. G. Multicenter evaluation of four methods of yeast inoculum preparation. J Clin Microbiol. 1988 Aug;26(8):1437–1441. doi: 10.1128/jcm.26.8.1437-1441.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfaller M. A., Cabezudo I., Hollis R., Huston B., Wenzel R. P. The use of biotyping and DNA fingerprinting in typing Candida albicans from hospitalized patients. Diagn Microbiol Infect Dis. 1990 Nov-Dec;13(6):481–489. doi: 10.1016/0732-8893(90)90080-f. [DOI] [PubMed] [Google Scholar]
- Pfaller M. A., Messer S. A., Coffman S. In vitro susceptibilities of clinical yeast isolates to a new echinocandin derivative, LY303366, and other antifungal agents. Antimicrob Agents Chemother. 1997 Apr;41(4):763–766. doi: 10.1128/aac.41.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reagan D. R., Pfaller M. A., Hollis R. J., Wenzel R. P. Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe. J Clin Microbiol. 1990 Dec;28(12):2733–2738. doi: 10.1128/jcm.28.12.2733-2738.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rex J. H., Bennett J. E., Sugar A. M., Pappas P. G., van der Horst C. M., Edwards J. E., Washburn R. G., Scheld W. M., Karchmer A. W., Dine A. P. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med. 1994 Nov 17;331(20):1325–1330. doi: 10.1056/NEJM199411173312001. [DOI] [PubMed] [Google Scholar]
- Rogers T. E., Galgiani J. N. Activity of fluconazole (UK 49,858) and ketoconazole against Candida albicans in vitro and in vivo. Antimicrob Agents Chemother. 1986 Sep;30(3):418–422. doi: 10.1128/aac.30.3.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterling T. R., Gasser R. A., Jr, Ziegler A. Emergence of resistance to amphotericin B during therapy for Candida glabrata infection in an immunocompetent host. Clin Infect Dis. 1996 Jul;23(1):187–188. doi: 10.1093/clinids/23.1.187. [DOI] [PubMed] [Google Scholar]
- Villareal K. M., Cook R. A., Galgiani J. N., Wenzel R. P., Pappas P. G., Pottage J. C., Jr, Gallis H. A., Crane L. R. Comparative analysis of three antifungal susceptibility test methods against prospectively collected Candida species. Diagn Microbiol Infect Dis. 1994 Feb;18(2):89–94. doi: 10.1016/0732-8893(94)90071-x. [DOI] [PubMed] [Google Scholar]
- Witt M. D., Lewis R. J., Larsen R. A., Milefchik E. N., Leal M. A., Haubrich R. H., Richie J. A., Edwards J. E., Jr, Ghannoum M. A. Identification of patients with acute AIDS-associated cryptococcal meningitis who can be effectively treated with fluconazole: the role of antifungal susceptibility testing. Clin Infect Dis. 1996 Feb;22(2):322–328. doi: 10.1093/clinids/22.2.322. [DOI] [PubMed] [Google Scholar]