Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Sep;41(9):2029–2032. doi: 10.1128/aac.41.9.2029

Pharmacokinetic interaction between itraconazole and ceftriaxone in Yucatan miniature pigs.

A Cavalier 1, D Levêque 1, J D Peter 1, J Salmon 1, H Elkhaïli 1, Y Salmon 1, P Nobelis 1, J Geisert 1, H Monteil 1, F Jehl 1
PMCID: PMC164060  PMID: 9303409

Abstract

Since ceftriaxone and itraconazole are highly protein bound, are excreted via a biliary pathway, and are in vitro modulators of the efflux pump P glycoprotein, a pharmacokinetic interaction between these antimicrobial agents can be hypothesized. Therefore, we evaluated the pharmacokinetics of itraconazole and ceftriaxone alone and in combination in a chronic model of catheterized miniature pigs. Itraconazole does not influence ceftriaxone kinetic behavior. The mean areas under the concentration-time curve (AUC) were 152.2 microg x h/ml (standard deviation [SD], 22.5) and 129.2 microg x h/ml (SD, 41.2) and the terminal half-lives were 1.1 h (SD, 0.3) and 0.9 h (SD, 0.2) when ceftriaxone was given alone and combined with itraconazole, respectively. Regarding itraconazole kinetics, ceftriaxone was shown to alter the disposition of the triazole. Contrary to what was expected, the AUC (from 0 to 8 h) decreased from 139.3 ng h/ml with itraconazole alone to 122.7 ng h/ml with itraconazole and ceftriaxone combined in pig 1, from 398.5 to 315.7 ng x h/ml in pig 2, and from 979.6 to 716.6 ng x h/ml in pig 3 (P of <0.01 by analysis of variance).

Full Text

The Full Text of this article is available as a PDF (168.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvidsson A., Alván G., Angelin B., Borgå O., Nord C. E. Ceftriaxone: renal and biliary excretion and effect on the colon microflora. J Antimicrob Chemother. 1982 Sep;10(3):207–215. doi: 10.1093/jac/10.3.207. [DOI] [PubMed] [Google Scholar]
  2. Azria M., Kiger J. L. Intérêt du porc miniature en recherche biomédicale. Therapie. 1972 Jul-Aug;27(4):723–732. [PubMed] [Google Scholar]
  3. Fojo A. T., Ueda K., Slamon D. J., Poplack D. G., Gottesman M. M., Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A. 1987 Jan;84(1):265–269. doi: 10.1073/pnas.84.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
  5. Gosland M. P., Lum B. L., Sikic B. I. Reversal by cefoperazone of resistance to etoposide, doxorubicin, and vinblastine in multidrug resistant human sarcoma cells. Cancer Res. 1989 Dec 15;49(24 Pt 1):6901–6905. [PubMed] [Google Scholar]
  6. Gupta S., Kim J., Gollapudi S. Reversal of daunorubicin resistance in P388/ADR cells by itraconazole. J Clin Invest. 1991 Apr;87(4):1467–1469. doi: 10.1172/JCI115154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hardin T. C., Graybill J. R., Fetchick R., Woestenborghs R., Rinaldi M. G., Kuhn J. G. Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother. 1988 Sep;32(9):1310–1313. doi: 10.1128/aac.32.9.1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayton W. L., Schandlik R., Stoeckel K. Biliary excretion and pharmacokinetics of ceftriaxone after cholecystectomy. Eur J Clin Pharmacol. 1986;30(4):445–451. doi: 10.1007/BF00607958. [DOI] [PubMed] [Google Scholar]
  9. Heykants J., Van Peer A., Van de Velde V., Van Rooy P., Meuldermans W., Lavrijsen K., Woestenborghs R., Van Cutsem J., Cauwenbergh G. The clinical pharmacokinetics of itraconazole: an overview. Mycoses. 1989;32 (Suppl 1):67–87. doi: 10.1111/j.1439-0507.1989.tb02296.x. [DOI] [PubMed] [Google Scholar]
  10. Jehl F., Gallion C., Monteil H. High-performance liquid chromatography of antibiotics. J Chromatogr. 1990 Oct 12;531:509–548. doi: 10.1016/s0378-4347(00)82293-8. [DOI] [PubMed] [Google Scholar]
  11. Juliano R. L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976 Nov 11;455(1):152–162. doi: 10.1016/0005-2736(76)90160-7. [DOI] [PubMed] [Google Scholar]
  12. Kaltenbach G., Levêque D., Peter J. D., Salmon J., Elkhaili H., Cavalier A., Salmon Y., Monteil H., Jehl F. Pharmacokinetic interaction between itraconazole and rifampin in Yucatan miniature pigs. Antimicrob Agents Chemother. 1996 Sep;40(9):2043–2046. doi: 10.1128/aac.40.9.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levêque D., Jehl F. P-glycoprotein and pharmacokinetics. Anticancer Res. 1995 Mar-Apr;15(2):331–336. [PubMed] [Google Scholar]
  14. Mayer U., Wagenaar E., Beijnen J. H., Smit J. W., Meijer D. K., van Asperen J., Borst P., Schinkel A. H. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br J Pharmacol. 1996 Nov;119(5):1038–1044. doi: 10.1111/j.1476-5381.1996.tb15775.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Panepinto L. M., Phillips R. W., Norden S., Pryor P. C., Cox R. A comfortable, minimum stress method of restraint for Yucatan miniature swine. Lab Anim Sci. 1983 Feb;33(1):95–97. [PubMed] [Google Scholar]
  16. Panepinto L. M., Phillips R. W. The Yucatan miniature pig: characterization and utilization in biomedical research. Lab Anim Sci. 1986 Aug;36(4):344–347. [PubMed] [Google Scholar]
  17. Pastan I., Gottesman M. M. Multidrug resistance. Annu Rev Med. 1991;42:277–286. doi: 10.1146/annurev.me.42.020191.001425. [DOI] [PubMed] [Google Scholar]
  18. Phung-Ba V., Warnery A., Scherman D., Wils P. Interaction of pristinamycin IA with P-glycoprotein in human intestinal epithelial cells. Eur J Pharmacol. 1995 Jan 16;288(2):187–192. doi: 10.1016/0922-4106(95)90193-0. [DOI] [PubMed] [Google Scholar]
  19. Pollock A. A., Tee P. E., Patel I. H., Spicehandler J., Simberkoff M. S., Rahal J. J., Jr Pharmacokinetic characteristics of intravenous ceftriaxone in normal adults. Antimicrob Agents Chemother. 1982 Nov;22(5):816–823. doi: 10.1128/aac.22.5.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stoeckel K. Pharmacokinetics of Rocephin, a highly active new cephalosporin with an exceptionally long biological half-life. Chemotherapy. 1981;27 (Suppl 1):42–46. doi: 10.1159/000238028. [DOI] [PubMed] [Google Scholar]
  21. Thiebaut F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7735–7738. doi: 10.1073/pnas.84.21.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woestenborghs R., Lorreyne W., Heykants J. Determination of itraconazole in plasma and animal tissues by high-performance liquid chromatography. J Chromatogr. 1987 Jan 23;413:332–337. doi: 10.1016/0378-4347(87)80249-9. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES