Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Oct;41(10):2089–2092. doi: 10.1128/aac.41.10.2089

Comparison of the efficacies of various formulations of amphotericin B against murine visceral leishmaniasis.

A B Mullen 1, K C Carter 1, A J Baillie 1
PMCID: PMC164075  PMID: 9333030

Abstract

The antileishmanial efficacies of four proprietary amphotericin B (AmB) formulations (Fungizone, AmBisome, Abelcet, and Amphocil) and an experimental nonionic surfactant vesicle (NIV) formulation were compared in a murine model of acute visceral leishmaniasis. By a multiple-dosing regimen, groups of Leishmania donovani-infected BALB/c mice were treated (2.5 mg of AmB per kg of body weight) on days 7 to 11 postinfection with one of the AmB formulations, and parasite burdens were determined on day 18 postinfection. All of the formulations caused significant suppression parasite burdens in spleens (P < 0.01 to 0.0005) and livers (P < 0.0005) compared with those in the spleens and livers of the controls. In addition, a significant suppression of parasite burdens in bone marrow (P < 0.0005) compared to the burdens in the bone marrow of the controls was obtained for all the formulations except Abelcet, which was inactive at this site. On the basis of their overall efficacies (activity against liver, spleen, and bone marrow parasites), the formulations could be ranked as follows: Amphocil = AmBisome > AmB-NIV > Abelcet >> Fungizone. On the basis of spectrophotometric measurements, AmB was shown to exist in a predominantly aggregated state in all of the formulations. Although incubation in 50% serum altered the degree of aggregation, the AmB remained predominantly aggregated, indicating that the AMB-lipid complex in all of the formulations was physically stable. The results of the study showed that antiparasitic efficacy is associated positively with the degree of AmB aggregation in the presence of serum.

Full Text

The Full Text of this article is available as a PDF (167.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barwicz J., Christian S., Gruda I. Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother. 1992 Oct;36(10):2310–2315. doi: 10.1128/aac.36.10.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradley D. J., Kirkley J. Regulation of Leishmania populations within the host. I. the variable course of Leishmania donovani infections in mice. Clin Exp Immunol. 1977 Oct;30(1):119–129. [PMC free article] [PubMed] [Google Scholar]
  3. Carter K. C., Baillie A. J., Alexander J., Dolan T. F. The therapeutic effect of sodium stibogluconate in BALB/c mice infected with Leishmania donovani is organ-dependent. J Pharm Pharmacol. 1988 May;40(5):370–373. doi: 10.1111/j.2042-7158.1988.tb05271.x. [DOI] [PubMed] [Google Scholar]
  4. Carter K. C., Dolan T. F., Alexander J., Baillie A. J., McColgan C. Visceral leishmaniasis: drug carrier system characteristics and the ability to clear parasites from the liver, spleen and bone marrow in Leishmania donovani infected BALB/c mice. J Pharm Pharmacol. 1989 Feb;41(2):87–91. doi: 10.1111/j.2042-7158.1989.tb06399.x. [DOI] [PubMed] [Google Scholar]
  5. Daneshmend T. K., Warnock D. W. Clinical pharmacokinetics of systemic antifungal drugs. Clin Pharmacokinet. 1983 Jan-Feb;8(1):17–42. doi: 10.2165/00003088-198308010-00002. [DOI] [PubMed] [Google Scholar]
  6. Davidson R. N., Croft S. L., Scott A., Maini M., Moody A. H., Bryceson A. D. Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Lancet. 1991 May 4;337(8749):1061–1062. doi: 10.1016/0140-6736(91)91708-3. [DOI] [PubMed] [Google Scholar]
  7. Davidson R. N., Russo R. Relapse of visceral leishmaniasis in patients who were coinfected with human immunodeficiency virus and who received treatment with liposomal amphotericin B. Clin Infect Dis. 1994 Sep;19(3):560–560. doi: 10.1093/clinids/19.3.560. [DOI] [PubMed] [Google Scholar]
  8. Dietze R., Fagundes S. M., Brito E. F., Milan E. P., Feitosa T. F., Suassuna F. A., Fonschiffrey G., Ksionski G., Dember J. Treatment of kala-azar in Brazil with Amphocil (amphotericin B cholesterol dispersion) for 5 days. Trans R Soc Trop Med Hyg. 1995 May-Jun;89(3):309–311. doi: 10.1016/0035-9203(95)90557-x. [DOI] [PubMed] [Google Scholar]
  9. Dietze R., Milan E. P., Berman J. D., Grogl M., Falqueto A., Feitosa T. F., Luz K. G., Suassuna F. A., Marinho L. A., Ksionski G. Treatment of Brazilian kala-azar with a short course of amphocil (amphotericin B cholesterol dispersion). Clin Infect Dis. 1993 Dec;17(6):981–986. doi: 10.1093/clinids/17.6.981. [DOI] [PubMed] [Google Scholar]
  10. Gangneux J. P., Sulahian A., Garin Y. J., Derouin F. Lipid formulations of amphotericin b in the treatment of experimental visceral leishmaniasis due to Leishmania infantum. Trans R Soc Trop Med Hyg. 1996 Sep-Oct;90(5):574–577. doi: 10.1016/s0035-9203(96)90330-2. [DOI] [PubMed] [Google Scholar]
  11. Hashim F. A., Khalil E. A., Ismail A., el Hassan A. M. Apparently successful treatment of two cases of post kala-azar dermal leishmaniasis with liposomal amphotericin B. Trans R Soc Trop Med Hyg. 1995 Jul-Aug;89(4):440–440. doi: 10.1016/0035-9203(95)90048-9. [DOI] [PubMed] [Google Scholar]
  12. Janknegt R., de Marie S., Bakker-Woudenberg I. A., Crommelin D. J. Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet. 1992 Oct;23(4):279–291. doi: 10.2165/00003088-199223040-00004. [DOI] [PubMed] [Google Scholar]
  13. Janoff A. S., Boni L. T., Popescu M. C., Minchey S. R., Cullis P. R., Madden T. D., Taraschi T., Gruner S. M., Shyamsunder E., Tate M. W. Unusual lipid structures selectively reduce the toxicity of amphotericin B. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6122–6126. doi: 10.1073/pnas.85.16.6122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laguna F., Torre-Cisneros J., Moreno V., Villanueva J. L., Valencia E. Efficacy of intermittent liposomal amphotericin B in the treatment of visceral leishmaniasis in patients infected with human immunodeficiency virus. Clin Infect Dis. 1995 Sep;21(3):711–712. doi: 10.1093/clinids/21.3.711. [DOI] [PubMed] [Google Scholar]
  15. Legrand P., Romero E. A., Cohen B. E., Bolard J. Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes. Antimicrob Agents Chemother. 1992 Nov;36(11):2518–2522. doi: 10.1128/aac.36.11.2518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ramos H., Valdivieso E., Gamargo M., Dagger F., Cohen B. E. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Membr Biol. 1996 Jul;152(1):65–75. doi: 10.1007/s002329900086. [DOI] [PubMed] [Google Scholar]
  17. Sawaya B. P., Briggs J. P., Schnermann J. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol. 1995 Aug;6(2):154–164. doi: 10.1681/ASN.V62154. [DOI] [PubMed] [Google Scholar]
  18. Senior J. H. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst. 1987;3(2):123–193. [PubMed] [Google Scholar]
  19. Sundar S., Murray H. W. Cure of antimony-unresponsive Indian visceral leishmaniasis with amphotericin B lipid complex. J Infect Dis. 1996 Mar;173(3):762–765. doi: 10.1093/infdis/173.3.762. [DOI] [PubMed] [Google Scholar]
  20. Tollemar J., Ringdén O. Lipid formulations of amphotericin B. Less toxicity but at what economic cost? Drug Saf. 1995 Oct;13(4):207–218. doi: 10.2165/00002018-199513040-00001. [DOI] [PubMed] [Google Scholar]
  21. Torre-Cisneros J., Villanueva J. L. Efficacy of liposomal amphotericin B in the treatment of visceral leishmaniasis in patients coinfected with the human immunodeficiency virus. Clin Infect Dis. 1995 Jan;20(1):191–191. doi: 10.1093/clinids/20.1.191. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES