Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Oct;41(10):2093–2098. doi: 10.1128/aac.41.10.2093

Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin.

R Rossau 1, H Traore 1, H De Beenhouwer 1, W Mijs 1, G Jannes 1, P De Rijk 1, F Portaels 1
PMCID: PMC164076  PMID: 9333031

Abstract

Mycobacterium tuberculosis resistance to rifampin results from nucleotide changes in the gene encoding the beta-subunit of the RNA polymerase (rpoB). We developed a reverse hybridization-based line probe assay (LiPA; the INNO-LiPA Rif. TB) carrying one oligonucleotide probe for the detection of M. tuberculosis complex strains and nine probes designed to detect nucleotide changes in the relevant part of rpoB. This assay was evaluated with 107 M. tuberculosis isolates with known rpoB sequences, 52 non-M. tuberculosis complex strains, and 61 and 203 clinical isolates found to be sensitive and resistant, respectively, by in vitro testing. The results indicated that (i) the M. tuberculosis complex probe was 100% specific, (ii) when compared to the results of nucleotide sequencing, no discrepancies with the results of INNO-LiPA Rif. TB were observed, (iii) all strains sensitive by in vitro susceptibility testing were correctly identified, and (iv) among the strains resistant by in vitro susceptibility testing, only 4 (2%) yielded conflicting results. The INNO-LiPA Rif. TB is therefore a reliable and widely applicable assay and a valuable tool for routine diagnostic use, given its simplicity and rapid performance.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990 Mar;28(3):495–503. doi: 10.1128/jcm.28.3.495-503.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bustreo F., Migliori G. B., Nardini S., Raviglione M. C. Antituberculosis drug resistance: is it worth measuring? The WHO/IUATLD Working Group on Antituberculosis Drug Resistance Surveillance. Monaldi Arch Chest Dis. 1996 Aug;51(4):299–302. [PubMed] [Google Scholar]
  3. Canetti G., Fox W., Khomenko A., Mahler H. T., Menon N. K., Mitchison D. A., Rist N., Smelev N. A. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ. 1969;41(1):21–43. [PMC free article] [PubMed] [Google Scholar]
  4. Cooksey R. C., Morlock G. P., Glickman S., Crawford J. T. Evaluation of a line probe assay kit for characterization of rpoB mutations in rifampin-resistant Mycobacterium tuberculosis isolates from New York City. J Clin Microbiol. 1997 May;35(5):1281–1283. doi: 10.1128/jcm.35.5.1281-1283.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Beenhouwer H., Lhiang Z., Jannes G., Mijs W., Machtelinckx L., Rossau R., Traore H., Portaels F. Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis. 1995 Oct;76(5):425–430. doi: 10.1016/0962-8479(95)90009-8. [DOI] [PubMed] [Google Scholar]
  6. Ellner J. J., Hinman A. R., Dooley S. W., Fischl M. A., Sepkowitz K. A., Goldberger M. J., Shinnick T. M., Iseman M. D., Jacobs W. R., Jr Tuberculosis symposium: emerging problems and promise. J Infect Dis. 1993 Sep;168(3):537–551. doi: 10.1093/infdis/168.3.537. [DOI] [PubMed] [Google Scholar]
  7. Felmlee T. A., Liu Q., Whelen A. C., Williams D., Sommer S. S., Persing D. H. Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J Clin Microbiol. 1995 Jun;33(6):1617–1623. doi: 10.1128/jcm.33.6.1617-1623.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frieden T. R., Sterling T., Pablos-Mendez A., Kilburn J. O., Cauthen G. M., Dooley S. W. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med. 1993 Feb 25;328(8):521–526. doi: 10.1056/NEJM199302253280801. [DOI] [PubMed] [Google Scholar]
  9. Heifets L. Qualitative and quantitative drug-susceptibility tests in mycobacteriology. Am Rev Respir Dis. 1988 May;137(5):1217–1222. doi: 10.1164/ajrccm/137.5.1217. [DOI] [PubMed] [Google Scholar]
  10. Heym B., Honoré N., Truffot-Pernot C., Banerjee A., Schurra C., Jacobs W. R., Jr, van Embden J. D., Grosset J. H., Cole S. T. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994 Jul 30;344(8918):293–298. doi: 10.1016/s0140-6736(94)91338-2. [DOI] [PubMed] [Google Scholar]
  11. Hunt J. M., Roberts G. D., Stockman L., Felmlee T. A., Persing D. H. Detection of a genetic locus encoding resistance to rifampin in mycobacterial cultures and in clinical specimens. Diagn Microbiol Infect Dis. 1994 Apr;18(4):219–227. doi: 10.1016/0732-8893(94)90024-8. [DOI] [PubMed] [Google Scholar]
  12. Kapur V., Li L. L., Iordanescu S., Hamrick M. R., Wanger A., Kreiswirth B. N., Musser J. M. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol. 1994 Apr;32(4):1095–1098. doi: 10.1128/jcm.32.4.1095-1098.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim B. J., Kim S. Y., Park B. H., Lyu M. A., Park I. K., Bai G. H., Kim S. J., Cha C. Y., Kook Y. H. Mutations in the rpoB gene of Mycobacterium tuberculosis that interfere with PCR-single-strand conformation polymorphism analysis for rifampin susceptibility testing. J Clin Microbiol. 1997 Feb;35(2):492–494. doi: 10.1128/jcm.35.2.492-494.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kochi A., Vareldzis B., Styblo K. Multidrug-resistant tuberculosis and its control. Res Microbiol. 1993 Feb;144(2):104–110. doi: 10.1016/0923-2508(93)90023-u. [DOI] [PubMed] [Google Scholar]
  15. Laszlo A., Rahman M., Raviglione M., Bustreo F. Quality assurance programme for drug susceptibility testing of Mycobacterium tuberculosis in the WHO/IUATLD Supranational Laboratory Network: first round of proficiency testing. Int J Tuberc Lung Dis. 1997 Jun;1(3):231–238. [PubMed] [Google Scholar]
  16. Morris S., Bai G. H., Suffys P., Portillo-Gomez L., Fairchok M., Rouse D. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis. 1995 Apr;171(4):954–960. doi: 10.1093/infdis/171.4.954. [DOI] [PubMed] [Google Scholar]
  17. Nolan C. M., Williams D. L., Cave M. D., Eisenach K. D., el-Hajj H., Hooton T. M., Thompson R. L., Goldberg S. V. Evolution of rifampin resistance in human immunodeficiency virus-associated tuberculosis. Am J Respir Crit Care Med. 1995 Sep;152(3):1067–1071. doi: 10.1164/ajrccm.152.3.7663785. [DOI] [PubMed] [Google Scholar]
  18. Ohno H., Koga H., Kohno S., Tashiro T., Hara K. Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother. 1996 Apr;40(4):1053–1056. doi: 10.1128/aac.40.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saiki R. K., Walsh P. S., Levenson C. H., Erlich H. A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6230–6234. doi: 10.1073/pnas.86.16.6230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stuyver L., Rossau R., Wyseur A., Duhamel M., Vanderborght B., Van Heuverswyn H., Maertens G. Typing of hepatitis C virus isolates and characterization of new subtypes using a line probe assay. J Gen Virol. 1993 Jun;74(Pt 6):1093–1102. doi: 10.1099/0022-1317-74-6-1093. [DOI] [PubMed] [Google Scholar]
  21. Taniguchi H., Aramaki H., Nikaido Y., Mizuguchi Y., Nakamura M., Koga T., Yoshida S. Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol Lett. 1996 Oct 15;144(1):103–108. doi: 10.1111/j.1574-6968.1996.tb08515.x. [DOI] [PubMed] [Google Scholar]
  22. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  23. Telenti A., Imboden P., Marchesi F., Schmidheini T., Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother. 1993 Oct;37(10):2054–2058. doi: 10.1128/aac.37.10.2054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whelen A. C., Felmlee T. A., Hunt J. M., Williams D. L., Roberts G. D., Stockman L., Persing D. H. Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using single-tube heminested PCR. J Clin Microbiol. 1995 Mar;33(3):556–561. doi: 10.1128/jcm.33.3.556-561.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Williams D. L., Waguespack C., Eisenach K., Crawford J. T., Portaels F., Salfinger M., Nolan C. M., Abe C., Sticht-Groh V., Gillis T. P. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother. 1994 Oct;38(10):2380–2386. doi: 10.1128/aac.38.10.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES