Abstract
We analyzed the uptake of RU 64004 by human neutrophils (polymorphonuclear leukocytes [PMNs]) relative to those of azithromycin and roxithromycin. RU 64004 was strongly and rapidly accumulated by PMNs, with a cellular concentration/extracellular concentration ratio (C/E) of greater than 200 in the first 5 min, and this was followed by a plateau at 120 to 180 min, with a C/E of 461 +/- 14.8 (10 experiments) at 180 min. RU 64004 uptake was moderately sensitive to external pH, and activation energy was also moderate (63 +/- 3.8 kJ/mol). RU 64004 was mainly located in PMN granules (about 70%) and egressed slowly from loaded cells, owing to avid reuptake. The possibility that PMN uptake of RU 64004 and other macrolides occurs through a carrier-mediated system was suggested by three key results. First, there existed a strong interindividual variability in uptake kinetics, suggesting variability in the numbers or activity of a transport protein. Second, macrolide uptake displayed saturation kinetics characteristic of that of a carrier-mediated transport system: RU 64004 had the highest Vmax value (3,846 ng/2.5 x 10(6) PMNs/5 min) and the lowest Km value (about 28 microM), indicating a high affinity for the transporter. Third, as observed previously with other erythromycin A derivatives, Ni2+ (a blocker of the Na+/Ca2+ exchanger which mediates Ca2+ influx in resting neutrophils) impaired RU 64004 uptake by PMNs, with a 50% inhibitory concentration of about 3.5 mM. In addition, we found that an active process is also involved in macrolide efflux, because verapamil significantly potentiated the release of all three macrolides tested. This effect of verapamil does not seem to be related to an inhibition of Ca2+ influx, because neither EGTA [ethylene glycol-bis (beta-aminoethyl ether)-N,N',N'-tetraacetic acid] nor Ni2+ modified macrolide efflux. The nature and characteristics of the entry- and efflux-mediating carrier systems are under investigation.
Full Text
The Full Text of this article is available as a PDF (310.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aikawa M. High-resolution autoradiography of malarial parasites treated with 3 H-chloroquine. Am J Pathol. 1972 May;67(2):277–284. [PMC free article] [PubMed] [Google Scholar]
- Arceci R. J., Stieglitz K., Bierer B. E. Immunosuppressants FK506 and rapamycin function as reversal agents of the multidrug resistance phenotype. Blood. 1992 Sep 15;80(6):1528–1536. [PubMed] [Google Scholar]
- Bonnet M., Van der Auwera P. In vitro and in vivo intraleukocytic accumulation of azithromycin (CP-62, 993) and its influence on ex vivo leukocyte chemiluminescence. Antimicrob Agents Chemother. 1992 Jun;36(6):1302–1309. doi: 10.1128/aac.36.6.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlier M. B., Garcia-Luque I., Montenez J. P., Tulkens P. M., Piret J. Accumulation, release and subcellular localization of azithromycin in phagocytic and non-phagocytic cells in culture. Int J Tissue React. 1994;16(5-6):211–220. [PubMed] [Google Scholar]
- Carlier M. B., Zenebergh A., Tulkens P. M. Cellular uptake and subcellular distribution of roxithromycin and erythromycin in phagocytic cells. J Antimicrob Chemother. 1987 Nov;20 (Suppl B):47–56. doi: 10.1093/jac/20.suppl_b.47. [DOI] [PubMed] [Google Scholar]
- Crosta L., Candiloro V., Meli M., Tolomeo M., Rausa L., Dusonchet L. Lacidipine and josamycin: two new multidrug resistance modulators. Anticancer Res. 1994 Nov-Dec;14(6B):2685–2689. [PubMed] [Google Scholar]
- Della Bianca V., Grzeskowiak M., De Togni P., Cassatella M., Rossi F. Inhibition by verapamil of neutrophil responses to formylmethionylleucylphenylalanine and phorbol myristate acetate. Mechanisms involving Ca2+ changes, cyclic AMP and protein kinase C. Biochim Biophys Acta. 1985 May 30;845(2):223–236. doi: 10.1016/0167-4889(85)90180-6. [DOI] [PubMed] [Google Scholar]
- Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
- Hand W. L., King-Thompson N., Holman J. W. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987 Oct;31(10):1553–1557. doi: 10.1128/aac.31.10.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henry P. D. Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Am J Cardiol. 1980 Dec 1;46(6):1047–1058. doi: 10.1016/0002-9149(80)90366-5. [DOI] [PubMed] [Google Scholar]
- Kirst H. A., Sides G. D. New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrob Agents Chemother. 1989 Sep;33(9):1419–1422. doi: 10.1128/aac.33.9.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klimecki W. T., Futscher B. W., Grogan T. M., Dalton W. S. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood. 1994 May 1;83(9):2451–2458. [PubMed] [Google Scholar]
- LITWACK G. Photometric determination of lysozyme activity. Proc Soc Exp Biol Med. 1955 Jul;89(3):401–403. doi: 10.3181/00379727-89-21824. [DOI] [PubMed] [Google Scholar]
- Laufen H., Wildfeuer A., Lach P. Mechanism of azithromycin uptake in human polymorphonuclear leucocytes. Arzneimittelforschung. 1990 Jun;40(6):686–689. [PubMed] [Google Scholar]
- Mtairag E. M., Abdelghaffar H., Douhet C., Labro M. T. Role of extracellular calcium in in vitro uptake and intraphagocytic location of macrolides. Antimicrob Agents Chemother. 1995 Aug;39(8):1676–1682. doi: 10.1128/aac.39.8.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mtairag E. M., Abdelghaffar H., Labro M. T. Investigation of dirithromycin and erythromycylamine uptake by human neutrophils in vitro. J Antimicrob Chemother. 1994 Mar;33(3):523–536. doi: 10.1093/jac/33.3.523. [DOI] [PubMed] [Google Scholar]
- Nichterlein T., Kretschmar M., Siegsmund M., Hof H. Erythromycin is ineffective against Listeria monocytogenes in multidrug resistant cells. J Chemother. 1995 Jun;7(3):184–188. doi: 10.1179/joc.1995.7.3.184. [DOI] [PubMed] [Google Scholar]
- Pastan I., Gottesman M. M. Multidrug resistance. Annu Rev Med. 1991;42:277–286. doi: 10.1146/annurev.me.42.020191.001425. [DOI] [PubMed] [Google Scholar]
- Schentag J. J., Ballow C. H. Tissue-directed pharmacokinetics. Am J Med. 1991 Sep 12;91(3A):5S–11S. doi: 10.1016/0002-9343(91)90394-d. [DOI] [PubMed] [Google Scholar]
- Schramm M., Towart R. Modulation of calcium channel function by drugs. Life Sci. 1985 Nov 18;37(20):1843–1860. doi: 10.1016/0024-3205(85)90001-3. [DOI] [PubMed] [Google Scholar]
- Styrt B., Klempner M. S. Inhibition of neutrophil oxidative metabolism by lysosomotropic weak bases. Blood. 1986 Feb;67(2):334–342. [PubMed] [Google Scholar]
- de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]