Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Oct;41(10):2113–2120. doi: 10.1128/aac.41.10.2113

The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide.

H Dietz 1, D Pfeifle 1, B Wiedemann 1
PMCID: PMC164079  PMID: 9333034

Abstract

Beta-lactamase induction in Enterobacter cloacae, which is linked to peptidoglycan recycling, was investigated by high-performance liquid chromatographic analysis of cell wall fragments in genetically defined cells of Escherichia coli. After treatment of cells with beta-lactams, we detected an increase in a D-tripeptide (disaccharide-tripeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid), aD-tetrapeptide (disaccharide-tetrapeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid-D-alanine), and aD-pentapeptide (disaccharide-pentapeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid-D-alanyl-D-alanine)levels in the periplasms of bacterial cells. Furthermore, only the accumulation of aD-pentapeptide correlates with the beta-lactamase-inducing capacity of the beta-lactam antibiotic. The transmembrane protein AmpG transports all three aD-peptides into the cytoplasm, where they are degraded into the corresponding monosaccharide peptides. In the absence of AmpD the constitutive overproduction of beta-lactamase is accompanied by an accumulation of aM-tripeptide (monosaccharide-tripeptide, anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid) and aM-pentapeptide (L1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanyl-D-alanine), but not aM-tetrapeptide (anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine), in the cytoplasm. Only the amount of aM-pentapeptide is increased upon treatment with imipenem. These findings indicate that aD-pentapeptide is the main periplasmic muropeptide, which is converted into the cytoplasmic signal molecule for beta-lactamase induction, the aM-pentapeptide.

Full Text

The Full Text of this article is available as a PDF (251.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birdsell D. C., Cota-Robles E. H. Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli. J Bacteriol. 1967 Jan;93(1):427–437. doi: 10.1128/jb.93.1.427-437.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Broome-Smith J. K., Spratt B. G. A vector for the construction of translational fusions to TEM beta-lactamase and the analysis of protein export signals and membrane protein topology. Gene. 1986;49(3):341–349. doi: 10.1016/0378-1119(86)90370-7. [DOI] [PubMed] [Google Scholar]
  4. Buchanan C. E., Sowell M. O. Synthesis of penicillin-binding protein 6 by stationary-phase Escherichia coli. J Bacteriol. 1982 Jul;151(1):491–494. doi: 10.1128/jb.151.1.491-494.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caparrós M., Pisabarro A. G., de Pedro M. A. Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. J Bacteriol. 1992 Sep;174(17):5549–5559. doi: 10.1128/jb.174.17.5549-5559.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cullmann W., Dalhoff A., Dick W. Nonspecific induction of beta-lactamase in Enterobacter cloacae. J Gen Microbiol. 1984 Jul;130(7):1781–1786. doi: 10.1099/00221287-130-7-1781. [DOI] [PubMed] [Google Scholar]
  7. Dalhoff A., Cullmann W. Specificity of beta-lactamase induction in Pseudomonas aeruginosa. J Antimicrob Chemother. 1984 Oct;14(4):349–357. doi: 10.1093/jac/14.4.349. [DOI] [PubMed] [Google Scholar]
  8. Dietz H., Pfeifle D., Wiedemann B. Location of N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid, presumed signal molecule for beta-lactamase induction, in the bacterial cell. Antimicrob Agents Chemother. 1996 Sep;40(9):2173–2177. doi: 10.1128/aac.40.9.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dietz H., Wiedemann B. The role of N-actylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine for the induction of beta-lactamase in Enterobacter cloacae. Zentralbl Bakteriol. 1996 Jul;284(2-3):207–217. doi: 10.1016/s0934-8840(96)80096-x. [DOI] [PubMed] [Google Scholar]
  10. Füssle R., Biscoping J., Behr R., Sziegoleit A. Development of resistance by Enterobacter cloacae during therapy of pulmonary infections in intensive care patients. Clin Investig. 1994 Dec;72(12):1015–1019. doi: 10.1007/BF00577747. [DOI] [PubMed] [Google Scholar]
  11. Gatus B. J., Bell S. M., Jimenez A. S. Enhancement of beta-lactamase production by glycine in Enterobacter cloacae ATCC.13047. Pathology. 1986 Jan;18(1):145–147. doi: 10.3109/00313028609090843. [DOI] [PubMed] [Google Scholar]
  12. Glauner B., Höltje J. V. Growth pattern of the murein sacculus of Escherichia coli. J Biol Chem. 1990 Nov 5;265(31):18988–18996. [PubMed] [Google Scholar]
  13. Glauner B., Höltje J. V., Schwarz U. The composition of the murein of Escherichia coli. J Biol Chem. 1988 Jul 25;263(21):10088–10095. [PubMed] [Google Scholar]
  14. Goodell E. W. Recycling of murein by Escherichia coli. J Bacteriol. 1985 Jul;163(1):305–310. doi: 10.1128/jb.163.1.305-310.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guest J. R., Stephens P. E. Molecular cloning of the pyruvate dehydrogenase complex genes of Escherichia coli. J Gen Microbiol. 1980 Dec;121(2):277–292. doi: 10.1099/00221287-121-2-277. [DOI] [PubMed] [Google Scholar]
  16. Hammes W., Schleifer K. H., Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan. J Bacteriol. 1973 Nov;116(2):1029–1053. doi: 10.1128/jb.116.2.1029-1053.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Höltje J. V., Kopp U., Ursinus A., Wiedemann B. The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett. 1994 Sep 15;122(1-2):159–164. doi: 10.1111/j.1574-6968.1994.tb07159.x. [DOI] [PubMed] [Google Scholar]
  18. Jacobs C., Huang L. J., Bartowsky E., Normark S., Park J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J. 1994 Oct 3;13(19):4684–4694. doi: 10.1002/j.1460-2075.1994.tb06792.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacobs C., Joris B., Jamin M., Klarsov K., Van Beeumen J., Mengin-Lecreulx D., van Heijenoort J., Park J. T., Normark S., Frère J. M. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol. 1995 Feb;15(3):553–559. doi: 10.1111/j.1365-2958.1995.tb02268.x. [DOI] [PubMed] [Google Scholar]
  20. Kopp U., Wiedemann B., Lindquist S., Normark S. Sequences of wild-type and mutant ampD genes of Citrobacter freundii and Enterobacter cloacae. Antimicrob Agents Chemother. 1993 Feb;37(2):224–228. doi: 10.1128/aac.37.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Korfmann G., Sanders C. C. ampG is essential for high-level expression of AmpC beta-lactamase in Enterobacter cloacae. Antimicrob Agents Chemother. 1989 Nov;33(11):1946–1951. doi: 10.1128/aac.33.11.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Korfmann G., Wiedemann B. Genetic control of beta-lactamase production in Enterobacter cloacae. Rev Infect Dis. 1988 Jul-Aug;10(4):793–799. doi: 10.1093/clinids/10.4.793. [DOI] [PubMed] [Google Scholar]
  23. Lindberg F., Lindquist S., Normark S. Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase. J Bacteriol. 1987 May;169(5):1923–1928. doi: 10.1128/jb.169.5.1923-1928.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lindberg F., Normark S. Common mechanism of ampC beta-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 beta-lactamase gene. J Bacteriol. 1987 Feb;169(2):758–763. doi: 10.1128/jb.169.2.758-763.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lindquist S., Galleni M., Lindberg F., Normark S. Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Mol Microbiol. 1989 Aug;3(8):1091–1102. doi: 10.1111/j.1365-2958.1989.tb00259.x. [DOI] [PubMed] [Google Scholar]
  26. Lindquist S., Weston-Hafer K., Schmidt H., Pul C., Korfmann G., Erickson J., Sanders C., Martin H. H., Normark S. AmpG, a signal transducer in chromosomal beta-lactamase induction. Mol Microbiol. 1993 Aug;9(4):703–715. doi: 10.1111/j.1365-2958.1993.tb01731.x. [DOI] [PubMed] [Google Scholar]
  27. Livermore D. M. Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur J Clin Microbiol. 1987 Aug;6(4):439–445. doi: 10.1007/BF02013107. [DOI] [PubMed] [Google Scholar]
  28. Lodge J. M., Piddock L. J. The control of class I beta-lactamase expression in Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 1991 Aug;28(2):167–172. doi: 10.1093/jac/28.2.167. [DOI] [PubMed] [Google Scholar]
  29. Mengin-Lecreulx D., van Heijenoort J., Park J. T. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol. 1996 Sep;178(18):5347–5352. doi: 10.1128/jb.178.18.5347-5352.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peter K., Korfmann G., Wiedemann B. Impact of the ampD gene and its product on beta-lactamase production in Enterobacter cloacae. Rev Infect Dis. 1988 Jul-Aug;10(4):800–805. doi: 10.1093/clinids/10.4.800. [DOI] [PubMed] [Google Scholar]
  31. Spratt B. G. Properties of the penicillin-binding proteins of Escherichia coli K12,. Eur J Biochem. 1977 Jan;72(2):341–352. doi: 10.1111/j.1432-1033.1977.tb11258.x. [DOI] [PubMed] [Google Scholar]
  32. Trippen B., Hammes W. P., Schleifer K. H., Kandler O. Die Wirkung von D-Aminosäuren auf die Struktur und Biosynthese des Peptidoglycans. Arch Microbiol. 1976 Sep 1;109(3):247–261. doi: 10.1007/BF00446636. [DOI] [PubMed] [Google Scholar]
  33. Tuomanen E., Lindquist S., Sande S., Galleni M., Light K., Gage D., Normark S. Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon. Science. 1991 Jan 11;251(4990):201–204. doi: 10.1126/science.1987637. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES