Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Oct;41(10):2137–2140. doi: 10.1128/aac.41.10.2137

The ketolide antibiotics HMR 3647 and HMR 3004 are active against Toxoplasma gondii in vitro and in murine models of infection.

F G Araujo 1, A A Khan 1, T L Slifer 1, A Bryskier 1, J S Remington 1
PMCID: PMC164083  PMID: 9333038

Abstract

Ketolides are a new class of macrolide antibiotics that have been shown to be active against a variety of bacteria including macrolide-resistant bacteria and mycobacteria. We examined two ketolides, HMR 3647 and HMR 3004, for their in vitro and in vivo activities against the protozoan parasite Toxoplasma gondii. In vitro, both ketolides at concentrations as low as 0.05 microg/ml markedly inhibited replication of tachyzoites of the RH strain within human foreskin fibroblasts. HMR 3004 demonstrated some toxicity for host cells after they were exposed to 5 microg of the drug per ml for 72 h. In contrast, HMR 3647 did not show any significant toxicity even at concentrations as high as 25 microg/ml. In vivo, both ketolides provided remarkable protection against death in mice lethally infected intraperitoneally with tachyzoites of the RH strain or orally with tissue cysts of the C56 strain of T. gondii. A dosage of 100 mg of HMR 3647 per kg of body weight per day administered for 10 days protected 50% of mice infected with tachyzoites. The same dosage of HMR 3004 protected 100% of the mice. In mice infected with cysts, a dosage of 30 mg of HMR 3647 per kg per day protected 100% of the mice, whereas a dosage of 40 mg of HMR 3004 per kg per day protected 75% of the mice. These results demonstrate that HMR 3647 and HMR 3004 possess excellent activities against two different strains of T. gondii and may be useful for the treatment of toxoplasmosis in humans.

Full Text

The Full Text of this article is available as a PDF (209.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araujo F. G., Guptill D. R., Remington J. S. Azithromycin, a macrolide antibiotic with potent activity against Toxoplasma gondii. Antimicrob Agents Chemother. 1988 May;32(5):755–757. doi: 10.1128/aac.32.5.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Araujo F. G., Huskinson J., Remington J. S. Remarkable in vitro and in vivo activities of the hydroxynaphthoquinone 566C80 against tachyzoites and tissue cysts of Toxoplasma gondii. Antimicrob Agents Chemother. 1991 Feb;35(2):293–299. doi: 10.1128/aac.35.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Araujo F. G., Khan A. A., Remington J. S. Rifapentine is active in vitro and in vivo against Toxoplasma gondii. Antimicrob Agents Chemother. 1996 Jun;40(6):1335–1337. doi: 10.1128/aac.40.6.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Araujo F. G., Prokocimer P., Lin T., Remington J. S. Activity of clarithromycin alone or in combination with other drugs for treatment of murine toxoplasmosis. Antimicrob Agents Chemother. 1992 Nov;36(11):2454–2457. doi: 10.1128/aac.36.11.2454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Araujo F. G., Prokocimer P., Remington J. S. Clarithromycin-minocycline is synergistic in a murine model of toxoplasmosis. J Infect Dis. 1992 Apr;165(4):788–788. doi: 10.1093/infdis/165.4.788. [DOI] [PubMed] [Google Scholar]
  6. Araujo F. G., Remington J. S. Synergistic activity of azithromycin and gamma interferon in murine toxoplasmosis. Antimicrob Agents Chemother. 1991 Aug;35(8):1672–1673. doi: 10.1128/aac.35.8.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Araujo F. G., Shepard R. M., Remington J. S. In vivo activity of the macrolide antibiotics azithromycin, roxithromycin and spiramycin against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis. 1991 Jun;10(6):519–524. doi: 10.1007/BF01963942. [DOI] [PubMed] [Google Scholar]
  8. Araujo F. G., Slifer T. Nonionic block copolymers potentiate activities of drugs for treatment of infections with Toxoplasma gondii. Antimicrob Agents Chemother. 1995 Dec;39(12):2696–2701. doi: 10.1128/aac.39.12.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Araujo F. G., Slifer T., Remington J. S. Rifabutin is active in murine models of toxoplasmosis. Antimicrob Agents Chemother. 1994 Mar;38(3):570–575. doi: 10.1128/aac.38.3.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Beckers C. J., Roos D. S., Donald R. G., Luft B. J., Schwab J. C., Cao Y., Joiner K. A. Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. J Clin Invest. 1995 Jan;95(1):367–376. doi: 10.1172/JCI117665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chamberland S., Kirst H. A., Current W. L. Comparative activity of macrolides against Toxoplasma gondii demonstrating utility of an in vitro microassay. Antimicrob Agents Chemother. 1991 May;35(5):903–909. doi: 10.1128/aac.35.5.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chang H. R., Pechere J. C. Effect of roxithromycin on acute toxoplasmosis in mice. Antimicrob Agents Chemother. 1987 Jul;31(7):1147–1149. doi: 10.1128/aac.31.7.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chang H. R., Pechère J. C. Activity of spiramycin against Toxoplasma gondii in vitro, in experimental infections and in human infection. J Antimicrob Chemother. 1988 Jul;22 (Suppl B):87–92. doi: 10.1093/jac/22.supplement_b.87. [DOI] [PubMed] [Google Scholar]
  14. Chang H. R., Pechère J. C. In vitro effects of four macrolides (roxithromycin, spiramycin, azithromycin [CP-62,993], and A-56268) on Toxoplasma gondii. Antimicrob Agents Chemother. 1988 Apr;32(4):524–529. doi: 10.1128/aac.32.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hofflin J. M., Remington J. S. In vivo synergism of roxithromycin (RU 965) and interferon against Toxoplasma gondii. Antimicrob Agents Chemother. 1987 Feb;31(2):346–348. doi: 10.1128/aac.31.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jamjian C., Biedenbach D. J., Jones R. N. In vitro evaluation of a novel ketolide antimicrobial agent, RU-64004. Antimicrob Agents Chemother. 1997 Feb;41(2):454–459. doi: 10.1128/aac.41.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laughon B. E., Allaudeen H. S., Becker J. M., Current W. L., Feinberg J., Frenkel J. K., Hafner R., Hughes W. T., Laughlin C. A., Meyers J. D. From the National Institutes of Health. Summary of the workshop on future directions in discovery and development of therapeutic agents for opportunistic infections associated with AIDS. J Infect Dis. 1991 Aug;164(2):244–251. doi: 10.1093/infdis/164.2.244. [DOI] [PubMed] [Google Scholar]
  18. Luft B. J., Hafner R., Korzun A. H., Leport C., Antoniskis D., Bosler E. M., Bourland D. D., 3rd, Uttamchandani R., Fuhrer J., Jacobson J. Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. Members of the ACTG 077p/ANRS 009 Study Team. N Engl J Med. 1993 Sep 30;329(14):995–1000. doi: 10.1056/NEJM199309303291403. [DOI] [PubMed] [Google Scholar]
  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES