Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Oct;41(10):2173–2176. doi: 10.1128/aac.41.10.2173

Postantibiotic effect of sanfetrinem compared with those of six other agents against 12 penicillin-susceptible and -resistant pneumococci.

S K Spangler 1, G Lin 1, M R Jacobs 1, P C Appelbaum 1
PMCID: PMC164088  PMID: 9333043

Abstract

The postantibiotic effect (PAE) and postantibiotic sub-MIC effect (PAE-SME) of sanfetrinem were compared to those of penicillin G, amoxicillin, cefpodoxime, ceftriaxone, imipenem, and clarithromycin against four penicillin-susceptible, four intermediately susceptible, and four resistant pneumococci. The MICs of imipenem were the lowest against all of the strains (0.03 to 0.5 microg/ml), followed by those of sanfetrinem (0.016 to 1.0 microg/ml), amoxicillin and ceftriaxone (0.016 to 2.0 microg/ml), and cefpodoxime (0.03 to 8.0 microg/ml). High-level resistance to clarithromycin (MIC, >64.0 microg/ml) was seen in three selected strains. The PAEs of all of the oral beta-lactams tested were similar for all of the strains, ranging from 1 to 6.5 h. The PAEs of ceftriaxone and imipenem ranged from 1 to 8 h, and those of clarithromycin ranged from 1 to 7 h. The mean PAEs of all of the beta-lactams and clarithromycin were 2.8 to 4.3 and 2.5 h, respectively. PAE-SMEs could not be determined for all of the strains due to complete killing, especially at high subinhibitory concentrations. However, the overall pattern with all of the compounds tested was that PAE-SMEs were longer than PAEs. Measurable PAE-SMEs of sanfetrinem at the three subinhibitory concentrations (0.125, 0.25, and 0.5 times the MIC) were 2 to 7, 2 to 7, and 3 to 6 h, while those of amoxicillin and cefpodoxime were 1 to 7.5, 2 to 4, and 4 to 9 and 2 to 7, 4 to 7, and 4 to 6 h, respectively. Measurable PAE-SMEs of ceftriaxone and imipenem were 1 to 6.5, 2 to 9, and 2 to 9 and 1.5 to 6, 2 to 5.8, and 4 to 7.7 h, respectively. Measurable clarithromycin PAE-SMEs were 1 to 5, 1 to 5, and 1 to 6 h at the three concentrations.

Full Text

The Full Text of this article is available as a PDF (153.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelbaum P. C. Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis. 1992 Jul;15(1):77–83. doi: 10.1093/clinids/15.1.77. [DOI] [PubMed] [Google Scholar]
  2. Barry A. L., Pfaller M. A., Fuchs P. C., Packer R. R. In vitro activities of 12 orally administered antimicrobial agents against four species of bacterial respiratory pathogens from U.S. Medical Centers in 1992 and 1993. Antimicrob Agents Chemother. 1994 Oct;38(10):2419–2425. doi: 10.1128/aac.38.10.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block S. L., Harrison C. J., Hedrick J. A., Tyler R. D., Smith R. A., Keegan E., Chartrand S. A. Penicillin-resistant Streptococcus pneumoniae in acute otitis media: risk factors, susceptibility patterns and antimicrobial management. Pediatr Infect Dis J. 1995 Sep;14(9):751–759. doi: 10.1097/00006454-199509000-00005. [DOI] [PubMed] [Google Scholar]
  4. Breiman R. F., Butler J. C., Tenover F. C., Elliott J. A., Facklam R. R. Emergence of drug-resistant pneumococcal infections in the United States. JAMA. 1994 Jun 15;271(23):1831–1835. [PubMed] [Google Scholar]
  5. Di Modugno E., Erbetti I., Ferrari L., Galassi G., Hammond S. M., Xerri L. In vitro activity of the tribactam GV104326 against gram-positive, gram-negative, and anaerobic bacteria. Antimicrob Agents Chemother. 1994 Oct;38(10):2362–2368. doi: 10.1128/aac.38.10.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doern G. V., Brueggemann A., Holley H. P., Jr, Rauch A. M. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients in the United States during the winter months of 1994 to 1995: results of a 30-center national surveillance study. Antimicrob Agents Chemother. 1996 May;40(5):1208–1213. doi: 10.1128/aac.40.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedland I. R., McCracken G. H., Jr Management of infections caused by antibiotic-resistant Streptococcus pneumoniae. N Engl J Med. 1994 Aug 11;331(6):377–382. doi: 10.1056/NEJM199408113310607. [DOI] [PubMed] [Google Scholar]
  8. Jacobs M. R. Treatment and diagnosis of infections caused by drug-resistant Streptococcus pneumoniae. Clin Infect Dis. 1992 Jul;15(1):119–127. doi: 10.1093/clinids/15.1.119. [DOI] [PubMed] [Google Scholar]
  9. Kikuchi K., Enari T., Minami S., Haruki K., Shibata Y., Hasegawa H., Katahira J., Totsuka K., Shimizu K. Postantibiotic effects and postantibiotic sub-MIC effects of benzylpenicillin on viridans streptococci isolated from patients with infective endocarditis. J Antimicrob Chemother. 1994 Nov;34(5):687–696. doi: 10.1093/jac/34.5.687. [DOI] [PubMed] [Google Scholar]
  10. Liñares J., Alonso T., Pérez J. L., Ayats J., Domínguez M. A., Pallarés R., Martín R. Decreased susceptibility of penicillin-resistant pneumococci to twenty-four beta-lactam antibiotics. J Antimicrob Chemother. 1992 Sep;30(3):279–288. doi: 10.1093/jac/30.3.279. [DOI] [PubMed] [Google Scholar]
  11. Liñares J., Pallares R., Alonso T., Perez J. L., Ayats J., Gudiol F., Viladrich P. F., Martin R. Trends in antimicrobial resistance of clinical isolates of Streptococcus pneumoniae in Bellvitge Hospital, Barcelona, Spain (1979-1990). Clin Infect Dis. 1992 Jul;15(1):99–105. doi: 10.1093/clinids/15.1.99. [DOI] [PubMed] [Google Scholar]
  12. Nelson C. T., Mason E. O., Jr, Kaplan S. L. Activity of oral antibiotics in middle ear and sinus infections caused by penicillin-resistant Streptococcus pneumoniae: implications for treatment. Pediatr Infect Dis J. 1994 Jul;13(7):585–589. doi: 10.1097/00006454-199407000-00001. [DOI] [PubMed] [Google Scholar]
  13. Odenholt-Tornqvist I., Löwdin E., Cars O. Pharmacodynamic effects of subinhibitory concentrations of beta-lactam antibiotics in vitro. Antimicrob Agents Chemother. 1991 Sep;35(9):1834–1839. doi: 10.1128/aac.35.9.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Odenholt-Tornqvist I., Löwdin E., Cars O. Postantibiotic sub-MIC effects of vancomycin, roxithromycin, sparfloxacin, and amikacin. Antimicrob Agents Chemother. 1992 Sep;36(9):1852–1858. doi: 10.1128/aac.36.9.1852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Odenholt-Tornqvist I. Studies on the postantibiotic effect and the postantibiotic sub-MIC effect of meropenem. J Antimicrob Chemother. 1993 Jun;31(6):881–892. doi: 10.1093/jac/31.6.881. [DOI] [PubMed] [Google Scholar]
  16. Oshida T., Onta T., Nakanishi N., Matsushita T., Yamaguchi T. Activity of sub-minimal inhibitory concentrations of aspoxicillin in prolonging the postantibiotic effect against Staphylococcus aureus. J Antimicrob Chemother. 1990 Jul;26(1):29–38. doi: 10.1093/jac/26.1.29. [DOI] [PubMed] [Google Scholar]
  17. Pankuch G. A., Jacobs M. R., Appelbaum P. C. Comparative activity of ampicillin, amoxycillin, amoxycillin/clavulanate and cefotaxime against 189 penicillin-susceptible and -resistant pneumococci. J Antimicrob Chemother. 1995 Jun;35(6):883–888. doi: 10.1093/jac/35.6.883. [DOI] [PubMed] [Google Scholar]
  18. Spangler S. K., Jacobs M. R., Appelbaum P. C. In vitro susceptibilities of 185 penicillin-susceptible and -resistant pneumococci to WY-49605 (SUN/SY 5555), a new oral penem, compared with those to penicillin G, amoxicillin, amoxicillin-clavulanate, cefixime, cefaclor, cefpodoxime, cefuroxime, and cefdinir. Antimicrob Agents Chemother. 1994 Dec;38(12):2902–2904. doi: 10.1128/aac.38.12.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spangler S. K., Jacobs M. R., Appelbaum P. C. MIC and time-kill studies of antipneumococcal activity of GV 118819X (sanfetrinem) compared with those of other agents. Antimicrob Agents Chemother. 1997 Jan;41(1):148–155. doi: 10.1128/aac.41.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spangler S. K., Jacobs M. R., Pankuch G. A., Appelbaum P. C. Susceptibility of 170 penicillin-susceptible and penicillin-resistant pneumococci to six oral cephalosporins, four quinolones, desacetylcefotaxime, Ro 23-9424 and RP 67829. J Antimicrob Chemother. 1993 Feb;31(2):273–280. doi: 10.1093/jac/31.2.273. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES