Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Oct;41(10):2196–2200. doi: 10.1128/aac.41.10.2196

Effects of food and sucralfate on a single oral dose of 500 milligrams of levofloxacin in healthy subjects.

L J Lee 1, B Hafkin 1, I D Lee 1, J Hoh 1, R Dix 1
PMCID: PMC164092  PMID: 9333047

Abstract

The effects of food and sucralfate on the pharmacokinetics of levofloxacin following the administration of a single 500-mg oral dose were investigated in a randomized, three-way crossover study with young healthy subjects (12 males and 12 females). Levofloxacin was administered under three conditions: fasting, fed (immediately after a standardized high-fat breakfast), and fasting with sucralfate given 2 h following the administration of levofloxacin. The concentrations of levofloxacin in plasma and urine were determined by high-pressure liquid chromatography. By noncompartmental methods, the maximum concentration of drug in serum (Cmax), the time to Cmax (Tmax), the area under the concentration-time curve (AUC), half-life (t1/2), clearance (CL/F), renal clearance (CLR), and cumulative amount of levofloxacin in urine (Ae) were estimated. The individual profiles of the drug concentration in plasma showed little difference among the three treatments. The only consistent effect of the coadministration of levofloxacin with a high-fat meal for most subjects was that levofloxacin absorption was delayed and Cmax was slightly reduced (Tmax, 1.0 and 2.0 h for fasting and fed conditions, respectively [P = 0.002]; Cmax, 5.9 +/- 1.3 and 5.1 +/- 0.9 microg/ml [90% confidence interval = 0.79 to 0.94] for fasting and fed conditions, respectively). Sucralfate, which was administered 2 h after the administration of levofloxacin, appeared to have no effect on levofloxacin's disposition compared with that under the fasting condition. Mean values of Cmax and AUC from time zero to infinity were 6.7 +/- 3.2 microg/ml and 47.9 +/- 8.4 microg x h/ml, respectively, following the administration of sucralfate compared to values of 5.9 +/- 1.3 microg/ml and 50.5 +/- 8.1 microg x h/ml, respectively, under fasting conditions. The mean t1/2, CL/F, CLR, and Ae values were similar among all three treatment groups. In conclusion, the absorption of levofloxacin was slightly delayed by food, although the overall bioavailability of levofloxacin following a high-fat meal was not altered. Finally, sucralfate did not alter the disposition of levofloxacin when sucralfate was given 2 h after the administration of the antibacterial agent, thus preventing a potential drug-drug interaction.

Full Text

The Full Text of this article is available as a PDF (177.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chien S. C., Chow A. T., Natarajan J., Williams R. R., Wong F. A., Rogge M. C., Nayak R. K. Absence of age and gender effects on the pharmacokinetics of a single 500-milligram oral dose of levofloxacin in healthy subjects. Antimicrob Agents Chemother. 1997 Jul;41(7):1562–1565. doi: 10.1128/aac.41.7.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chien S. C., Rogge M. C., Gisclon L. G., Curtin C., Wong F., Natarajan J., Williams R. R., Fowler C. L., Cheung W. K., Chow A. T. Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. Antimicrob Agents Chemother. 1997 Oct;41(10):2256–2260. doi: 10.1128/aac.41.10.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dudley M. N., Marchbanks C. R., Flor S. C., Beals B. The effect of food or milk on the absorption kinetics of ofloxacin. Eur J Clin Pharmacol. 1991;41(6):569–571. doi: 10.1007/BF00314986. [DOI] [PubMed] [Google Scholar]
  4. Frost R. W., Carlson J. D., Dietz A. J., Jr, Heyd A., Lettieri J. T. Ciprofloxacin pharmacokinetics after a standard or high-fat/high-calcium breakfast. J Clin Pharmacol. 1989 Oct;29(10):953–955. doi: 10.1002/j.1552-4604.1989.tb03260.x. [DOI] [PubMed] [Google Scholar]
  5. Fu K. P., Lafredo S. C., Foleno B., Isaacson D. M., Barrett J. F., Tobia A. J., Rosenthale M. E. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin), an optically active ofloxacin. Antimicrob Agents Chemother. 1992 Apr;36(4):860–866. doi: 10.1128/aac.36.4.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujimoto T., Mitsuhashi S. In vitro antibacterial activity of DR-3355, the S-(-)-isomer of ofloxacin. Chemotherapy. 1990;36(4):268–276. doi: 10.1159/000238777. [DOI] [PubMed] [Google Scholar]
  7. Garrelts J. C., Godley P. J., Peterie J. D., Gerlach E. H., Yakshe C. C. Sucralfate significantly reduces ciprofloxacin concentrations in serum. Antimicrob Agents Chemother. 1990 May;34(5):931–933. doi: 10.1128/aac.34.5.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laganière S., Davies R. F., Carignan G., Foris K., Goernert L., Carrier K., Pereira C., McGilveray I. Pharmacokinetic and pharmacodynamic interactions between diltiazem and quinidine. Clin Pharmacol Ther. 1996 Sep;60(3):255–264. doi: 10.1016/S0009-9236(96)90052-1. [DOI] [PubMed] [Google Scholar]
  9. Ledergerber B., Bettex J. D., Joos B., Flepp M., Lüthy R. Effect of standard breakfast on drug absorption and multiple-dose pharmacokinetics of ciprofloxacin. Antimicrob Agents Chemother. 1985 Mar;27(3):350–352. doi: 10.1128/aac.27.3.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lehto P., Kivistö K. T. Effect of sucralfate on absorption of norfloxacin and ofloxacin. Antimicrob Agents Chemother. 1994 Feb;38(2):248–251. doi: 10.1128/aac.38.2.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lubowski T. J., Nightingale C. H., Sweeney K., Quintiliani R. Effect of sucralfate on pharmacokinetics of fleroxacin in healthy volunteers. Antimicrob Agents Chemother. 1992 Dec;36(12):2758–2760. doi: 10.1128/aac.36.12.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moore K. H., Yuen G. J., Raasch R. H., Eron J. J., Martin D., Mydlow P. K., Hussey E. K. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole. Clin Pharmacol Ther. 1996 May;59(5):550–558. doi: 10.1016/S0009-9236(96)90183-6. [DOI] [PubMed] [Google Scholar]
  13. Neuvonen P. J., Kivistö K. T. Milk and yoghurt do not impair the absorption of ofloxacin. Br J Clin Pharmacol. 1992 Mar;33(3):346–348. doi: 10.1111/j.1365-2125.1992.tb04050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parpia S. H., Nix D. E., Hejmanowski L. G., Goldstein H. R., Wilton J. H., Schentag J. J. Sucralfate reduces the gastrointestinal absorption of norfloxacin. Antimicrob Agents Chemother. 1989 Jan;33(1):99–102. doi: 10.1128/aac.33.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Polk R. E. Drug-drug interactions with ciprofloxacin and other fluoroquinolones. Am J Med. 1989 Nov 30;87(5A):76S–81S. doi: 10.1016/0002-9343(89)90028-4. [DOI] [PubMed] [Google Scholar]
  16. Somogyi A. A., Bochner F., Keal J. A., Rolan P. E., Smith M. Effect of food on enoxacin absorption. Antimicrob Agents Chemother. 1987 Apr;31(4):638–639. doi: 10.1128/aac.31.4.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Steinijans V. W., Hartmann M., Huber R., Radtke H. W. Lack of pharmacokinetic interaction as an equivalence problem. Int J Clin Pharmacol Ther Toxicol. 1991 Aug;29(8):323–328. [PubMed] [Google Scholar]
  18. Une T., Fujimoto T., Sato K., Osada Y. In vitro activity of DR-3355, an optically active ofloxacin. Antimicrob Agents Chemother. 1988 Sep;32(9):1336–1340. doi: 10.1128/aac.32.9.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Welling P. G., Tse F. L. The influence of food on the absorption of antimicrobial agents. J Antimicrob Chemother. 1982 Jan;9(1):7–27. doi: 10.1093/jac/9.1.7. [DOI] [PubMed] [Google Scholar]
  20. Wong F. A., Juzwin S. J., Flor S. C. Rapid stereospecific high-performance liquid chromatographic determination of levofloxacin in human plasma and urine. J Pharm Biomed Anal. 1997 Mar;15(6):765–771. doi: 10.1016/s0731-7085(96)01890-0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES