Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Oct;41(10):2224–2228. doi: 10.1128/aac.41.10.2224

Studies of the mechanism of human salivary histatin-5 candidacidal activity with histatin-5 variants and azole-sensitive and -resistant Candida species.

H Tsai 1, L A Bobek 1
PMCID: PMC164097  PMID: 9333052

Abstract

Histatins are a group of small, cationic, antifungal peptides present in human saliva. A previous molecular modeling analysis suggested structural similarity between the Phe14-His15 and His18-His19 dipeptide sequences in histatin-5 (Hsn-5; a 24-amino-acid polypeptide) and the sequence of miconazole (one of the azole-based antifungal therapeutic agents), implying that the mechanisms of killing of Candida albicans by these two molecules may be similar. To further elaborate on this observation, we have produced two variants of Hsn-5 in which Phe14-His15 or His18-His19 dipeptide sequences were replaced by Ala-Ala (F14A/H15A and H18A/H19A) to eliminate the phenyl and imidazole rings of the side chains and assessed their candidacidal activities against C. albicans. In addition, we tested azole-resistant C. albicans and Candida glabrata strains for their susceptibilities to Hsn-5. Analysis of the purified recombinant proteins for their candidacidal activities indicated that both variants were significantly less effective (the molar concentrations required to kill half of the maximum number of cells [ED50s], approximately 67 and approximately 149 microM for F14A/H15A and H18A/H19A, respectively) than the unaltered Hsn-5 (ED50, approximately 8 microM) at killing C. albicans, suggesting that the two dipeptide sequences are important for the candidacidal activity of Hsn-5. Assessment of the candidacidal activity of Hsn-5 with the well-characterized azole-resistant strains of C. albicans and C. glabrata, however, suggested that the mode of action of histatins against Candida is distinct from that of azole-based antifungal agents because Hsn-5 kills both azole-sensitive and azole-resistant strains equally well.

Full Text

The Full Text of this article is available as a PDF (267.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baum B. J., Bird J. L., Longton R. W. Polyacrylamide gel electrophoresis of human salivary histidine-rich-polypeptides. J Dent Res. 1977 Sep;56(9):1115–1118. doi: 10.1177/00220345770560091801. [DOI] [PubMed] [Google Scholar]
  2. Cannon R. D., Holmes A. R., Mason A. B., Monk B. C. Oral Candida: clearance, colonization, or candidiasis? J Dent Res. 1995 May;74(5):1152–1161. doi: 10.1177/00220345950740050301. [DOI] [PubMed] [Google Scholar]
  3. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  4. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  5. Joly V., Bolard J., Yeni P. In vitro models for studying toxicity of antifungal agents. Antimicrob Agents Chemother. 1992 Sep;36(9):1799–1804. doi: 10.1128/aac.36.9.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kalb V. F., Loper J. C., Dey C. R., Woods C. W., Sutter T. R. Isolation of a cytochrome P-450 structural gene from Saccharomyces cerevisiae. Gene. 1986;45(3):237–245. doi: 10.1016/0378-1119(86)90021-1. [DOI] [PubMed] [Google Scholar]
  7. Kirkpatrick C. H., Green I., Rich R. R., Schade A. L. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis. 1971 Dec;124(6):539–544. doi: 10.1093/infdis/124.6.539. [DOI] [PubMed] [Google Scholar]
  8. Lal K., Pollock J. J., Santarpia R. P., 3rd, Heller H. M., Kaufman H. W., Fuhrer J., Steigbigel R. T. Pilot study comparing the salivary cationic protein concentrations in healthy adults and AIDS patients: correlation with antifungal activity. J Acquir Immune Defic Syndr. 1992;5(9):904–914. [PubMed] [Google Scholar]
  9. Lal K., Santarpia R. P., 3rd, Xu L., Manssuri F., Pollock J. J. One-step purification of histidine-rich polypeptides form human parotid saliva and determination of anti-candidal activity. Oral Microbiol Immunol. 1992 Feb;7(1):44–50. doi: 10.1111/j.1399-302x.1992.tb00019.x. [DOI] [PubMed] [Google Scholar]
  10. MacKay B. J., Pollock J. J., Iacono V. J., Baum B. J. Isolation of milligram quantities of a group of histidine-rich polypeptides from human parotid saliva. Infect Immun. 1984 Jun;44(3):688–694. doi: 10.1128/iai.44.3.688-694.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mandel I. D., Barr C. E., Turgeon L. Longitudinal study of parotid saliva in HIV-1 infection. J Oral Pathol Med. 1992 May;21(5):209–213. doi: 10.1111/j.1600-0714.1992.tb00103.x. [DOI] [PubMed] [Google Scholar]
  12. Murakami Y., Nagata H., Shizukuishi S., Nakashima K., Okawa T., Takigawa M., Tsunemitsu A. Histatin as a synergistic stimulator with epidermal growth factor of rabbit chondrocyte proliferation. Biochem Biophys Res Commun. 1994 Jan 14;198(1):274–280. doi: 10.1006/bbrc.1994.1038. [DOI] [PubMed] [Google Scholar]
  13. Nikawa H., Hayashi S., Nikawa Y., Hamada T., Samaranayake L. P. Interactions between denture lining material, protein pellicles and Candida albicans. Arch Oral Biol. 1993 Jul;38(7):631–634. doi: 10.1016/0003-9969(93)90132-6. [DOI] [PubMed] [Google Scholar]
  14. O'Connell B. C., Xu T., Walsh T. J., Sein T., Mastrangeli A., Crystal R. G., Oppenheim F. G., Baum B. J. Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands. Hum Gene Ther. 1996 Dec 1;7(18):2255–2261. doi: 10.1089/hum.1996.7.18-2255. [DOI] [PubMed] [Google Scholar]
  15. Oppenheim F. G., Xu T., McMillian F. M., Levitz S. M., Diamond R. D., Offner G. D., Troxler R. F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem. 1988 Jun 5;263(16):7472–7477. [PubMed] [Google Scholar]
  16. Peterson D. E. Oral candidiasis. Clin Geriatr Med. 1992 Aug;8(3):513–527. [PubMed] [Google Scholar]
  17. Pollock J. J., Denepitiya L., MacKay B. J., Iacono V. J. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun. 1984 Jun;44(3):702–707. doi: 10.1128/iai.44.3.702-707.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Raj P. A., Edgerton M., Levine M. J. Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J Biol Chem. 1990 Mar 5;265(7):3898–3905. [PubMed] [Google Scholar]
  19. Raj P. A., Soni S. D., Levine M. J. Membrane-induced helical conformation of an active candidacidal fragment of salivary histatins. J Biol Chem. 1994 Apr 1;269(13):9610–9619. [PubMed] [Google Scholar]
  20. Ramalingam K., Gururaja T. L., Ramasubbu N., Levine M. J. Stabilization of helix by side-chain interactions in histatin-derived peptides: role in candidacidal activity. Biochem Biophys Res Commun. 1996 Aug 5;225(1):47–53. doi: 10.1006/bbrc.1996.1129. [DOI] [PubMed] [Google Scholar]
  21. Rayhan R., Xu L., Santarpia R. P., 3rd, Tylenda C. A., Pollock J. J. Antifungal activities of salivary histidine-rich polypeptides against Candida albicans and other oral yeast isolates. Oral Microbiol Immunol. 1992 Feb;7(1):51–52. doi: 10.1111/j.1399-302x.1992.tb00020.x. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Santarpia R. P., 3rd, Brant E. C., Lal K., Brasseur M. M., Hong A. L., Pollock J. J. A comparison of the inhibition of blastospore viability and germ-tube development in Candida albicans by histidine peptides and ketoconazole. Arch Oral Biol. 1988;33(8):567–573. doi: 10.1016/0003-9969(88)90131-8. [DOI] [PubMed] [Google Scholar]
  24. Sternberg S. The emerging fungal threat. Science. 1994 Dec 9;266(5191):1632–1634. doi: 10.1126/science.7702654. [DOI] [PubMed] [Google Scholar]
  25. Tobgi R. S., Samaranayake L. P., MacFarlane T. W. In vitro susceptibility of Candida species to lysozyme. Oral Microbiol Immunol. 1988 Mar;3(1):35–39. doi: 10.1111/j.1399-302x.1988.tb00603.x. [DOI] [PubMed] [Google Scholar]
  26. Tsai H., Raj P. A., Bobek L. A. Candidacidal activity of recombinant human salivary histatin-5 and variants. Infect Immun. 1996 Dec;64(12):5000–5007. doi: 10.1128/iai.64.12.5000-5007.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vanden Bossche H., Willemsens G., Marichal P. Anti-Candida drugs--the biochemical basis for their activity. Crit Rev Microbiol. 1987;15(1):57–72. doi: 10.3109/10408418709104448. [DOI] [PubMed] [Google Scholar]
  28. White T. C. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1997 Jul;41(7):1482–1487. doi: 10.1128/aac.41.7.1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. White T. C. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans. Antimicrob Agents Chemother. 1997 Jul;41(7):1488–1494. doi: 10.1128/aac.41.7.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xu T., Levitz S. M., Diamond R. D., Oppenheim F. G. Anticandidal activity of major human salivary histatins. Infect Immun. 1991 Aug;59(8):2549–2554. doi: 10.1128/iai.59.8.2549-2554.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES