Abstract
Carbapenem resistance was studied in two sets of Citrobacter freundii strains: (i) strain CFr950, resistant to imipenem (MIC, 16 microg/ml) and isolated in vivo during imipenem therapy, and strain CFr950-Rev, the spontaneous, imipenem-susceptible revertant of CFr950 selected in vitro, and (ii) strains CFr801 and CFr802, two imipenem-resistant mutants selected in vitro from the susceptible clinical isolate CFr800. In all strains, whether they were imipenem-susceptible or -resistant strains, production of the cephalosporinase was derepressed and their Km values for cephaloridine were in the range of 128 to 199 microM. No carbapenemase activity was detected in vitro. The role of cephalosporinase overproduction in the resistance was demonstrated after introduction of the ampD gene which decreased the level of production of cephalosporinase at least 250-fold and resulted in an 8- to 64-fold decrease in the MICs of the carbapenems. The role of reduced permeability in the resistance was suggested by the absence, in CFr950 and CFr802, of two outer membrane proteins (the 42- and 40-kDa putative porins whose levels were considerably decreased in CFr801) and the reappearance of the 42-kDa protein in imipenem-susceptible strain CFr950-Rev. This role was confirmed after introduction of the ompF gene of Escherichia coli into the CFr strains, which resulted in 8- to 16-fold decreases in the MICs of carbapenems for CFr802 and CFr950. We infer from these results that the association of reduced, porin-mediated permeability with high-level cephalosporinase production, observed previously in other gram-negative bacteria, may also confer carbapenem resistance on C. freundii.
Full Text
The Full Text of this article is available as a PDF (184.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoyama H., Fujimaki K., Sato K., Fujii T., Inoue M., Hirai K., Mitsuhashi S. Clinical isolate of Citrobacter freundii highly resistant to new quinolones. Antimicrob Agents Chemother. 1988 Jun;32(6):922–924. doi: 10.1128/aac.32.6.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford P. A., Urban C., Mariano N., Projan S. J., Rahal J. J., Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother. 1997 Mar;41(3):563–569. doi: 10.1128/aac.41.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush K., Tanaka S. K., Bonner D. P., Sykes R. B. Resistance caused by decreased penetration of beta-lactam antibiotics into Enterobacter cloacae. Antimicrob Agents Chemother. 1985 Apr;27(4):555–560. doi: 10.1128/aac.27.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chow J. W., Shlaes D. M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother. 1991 Oct;28(4):499–504. doi: 10.1093/jac/28.4.499. [DOI] [PubMed] [Google Scholar]
- Ehrhardt A. F., Sanders C. C., Thomson K. S., Watanakunakorn C., Trujillano-Martin I. Emergence of resistance to imipenem in Enterobacter isolates masquerading as Klebsiella pneumoniae during therapy with imipenem/cilastatin. Clin Infect Dis. 1993 Jul;17(1):120–122. doi: 10.1093/clinids/17.1.120. [DOI] [PubMed] [Google Scholar]
- Gutmann L., Williamson R., Moreau N., Kitzis M. D., Collatz E., Acar J. F., Goldstein F. W. Cross-resistance to nalidixic acid, trimethoprim, and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter, and Serratia. J Infect Dis. 1985 Mar;151(3):501–507. doi: 10.1093/infdis/151.3.501. [DOI] [PubMed] [Google Scholar]
- Honoré N., Nicolas M. H., Cole S. T. Regulation of enterobacterial cephalosporinase production: the role of a membrane-bound sensory transducer. Mol Microbiol. 1989 Aug;3(8):1121–1130. doi: 10.1111/j.1365-2958.1989.tb00262.x. [DOI] [PubMed] [Google Scholar]
- Hopkins J. M., Towner K. J. Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. J Antimicrob Chemother. 1990 Jan;25(1):49–55. doi: 10.1093/jac/25.1.49. [DOI] [PubMed] [Google Scholar]
- Lee E. H., Nicolas M. H., Kitzis M. D., Pialoux G., Collatz E., Gutmann L. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob Agents Chemother. 1991 Jun;35(6):1093–1098. doi: 10.1128/aac.35.6.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livermore D. M. Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992 Sep;36(9):2046–2048. doi: 10.1128/aac.36.9.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathew A., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol. 1975 May;88(1):169–178. doi: 10.1099/00221287-88-1-169. [DOI] [PubMed] [Google Scholar]
- Mehtar S., Tsakris A., Pitt T. L. Imipenem resistance in Proteus mirabilis. J Antimicrob Chemother. 1991 Oct;28(4):612–615. doi: 10.1093/jac/28.4.612. [DOI] [PubMed] [Google Scholar]
- Naas T., Livermore D. M., Nordmann P. Characterization of an LysR family protein, SmeR from Serratia marcescens S6, its effect on expression of the carbapenem-hydrolyzing beta-lactamase Sme-1, and comparison of this regulator with other beta-lactamase regulators. Antimicrob Agents Chemother. 1995 Mar;39(3):629–637. doi: 10.1128/AAC.39.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naas T., Vandel L., Sougakoff W., Livermore D. M., Nordmann P. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A beta-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother. 1994 Jun;38(6):1262–1270. doi: 10.1128/aac.38.6.1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuwirth C., Siébor E., Duez J. M., Péchinot A., Kazmierczak A. Imipenem resistance in clinical isolates of Proteus mirabilis associated with alterations in penicillin-binding proteins. J Antimicrob Chemother. 1995 Aug;36(2):335–342. doi: 10.1093/jac/36.2.335. [DOI] [PubMed] [Google Scholar]
- Nordmann P., Mariotte S., Naas T., Labia R., Nicolas M. H. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother. 1993 May;37(5):939–946. doi: 10.1128/aac.37.5.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nélet F., Gutmann L., Kitzis M. D., Acar J. F. Tigemonam activity against clinical isolates of Enterobacteriaceae and Enterobacteriaceae with known mechanisms of resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1989 Aug;24(2):173–181. doi: 10.1093/jac/24.2.173. [DOI] [PubMed] [Google Scholar]
- Osano E., Arakawa Y., Wacharotayankun R., Ohta M., Horii T., Ito H., Yoshimura F., Kato N. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994 Jan;38(1):71–78. doi: 10.1128/aac.38.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raimondi A., Traverso A., Nikaido H. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Antimicrob Agents Chemother. 1991 Jun;35(6):1174–1180. doi: 10.1128/aac.35.6.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramakrishnan G., Ikenaka K., Inouye M. Uncoupling of osmoregulation of the Escherichia coli K-12 ompF gene from ompB-dependent transcription. J Bacteriol. 1985 Jul;163(1):82–87. doi: 10.1128/jb.163.1.82-87.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen B. A., Bush K., Keeney D., Yang Y., Hare R., O'Gara C., Medeiros A. A. Characterization of IMI-1 beta-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob Agents Chemother. 1996 Sep;40(9):2080–2086. doi: 10.1128/aac.40.9.2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson K. S., Sanders C. C., Chmel H. Imipenem resistance in Enterobacter. Eur J Clin Microbiol Infect Dis. 1993 Aug;12(8):610–613. doi: 10.1007/BF01973639. [DOI] [PubMed] [Google Scholar]
- Tzouvelekis L. S., Tzelepi E., Mentis A. F., Vatopoulos A. C., Tsakris A. Imipenem resistance in Enterobacter aerogenes is associated with derepression of chromosomal cephalosporinases and impaired permeability. FEMS Microbiol Lett. 1992 Aug 15;74(2-3):195–199. doi: 10.1016/0378-1097(92)90428-q. [DOI] [PubMed] [Google Scholar]
- Yang Y. J., Wu P. J., Livermore D. M. Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother. 1990 May;34(5):755–758. doi: 10.1128/aac.34.5.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou X. Y., Kitzis M. D., Acar J. F., Gutmann L. Activity of the beta-lactamase inhibitor BRL 42715 against cephalosporinases produced by Enterobacteriaceae. J Antimicrob Chemother. 1993 Apr;31(4):473–480. doi: 10.1093/jac/31.4.473. [DOI] [PubMed] [Google Scholar]
- Zhou X. Y., Kitzis M. D., Gutmann L. Role of cephalosporinase in carbapenem resistance of clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993 Jun;37(6):1387–1389. doi: 10.1128/aac.37.6.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Champs C., Henquell C., Guelon D., Sirot D., Gazuy N., Sirot J. Clinical and bacteriological study of nosocomial infections due to Enterobacter aerogenes resistant to imipenem. J Clin Microbiol. 1993 Jan;31(1):123–127. doi: 10.1128/jcm.31.1.123-127.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]